LETTER
Palladium-mediated Approach to Cryptocarya Alkaloids
1873
might lead one to assume that a less polar transition state lyl)Cl system. Toluene was shown to be the best solvent
is involved in the rate-determining step of the catalytic cy- for the reaction resulting in quantitative yields. The sol-
cle. Attempts to lower the catalyst loading, the reaction vent effect suggests a possible involvement of a low po-
temperature or the reaction time did lead to product for- larity transition state in the rate-determining step of the
mation but in lower yields.
catalytic cycle. Transformation of the two indolizine-
structures by straightforward methods leads to the formal
synthesis of two alkaloids from Cryptocarya Bowiei, rac-
cryptaustoline and rac-cryptowoline.
Conversion of the two indolizines 9 and 11 to the corre-
sponding alkaloids according to the procedure of
Kametani4 results in the first formal synthesis of rac-
cryptaustoline4 1 and rac-cryptowoline4 2 involving a
critical palladium-mediated step (Scheme 4).
Acknowledgment
We gratefully acknowledge the National Science Foundation for
financial support of this research.
References
(1) (a) Ewing, J.; Hughes, G. K.; Ritchie, E.; Taylor, W. C. Aust.
J. Chem. 1953, 6, 78. (b) Moskowitz, H.; Leboeuf, M.;
Care, A.; Ranaivo, A. Can. J. Chem. 1989, 67, 947.
(2) Ambros, A.; von Angerer, A.; Wiegrebe, W. Arch. Pharm.
(Weinheim, Ger.) 1988, 321, 481.
(3) Ambros, A.; von Angerer, A.; Wiegrebe, W. Arch. Pharm.
(Weinheim, Ger.) 1988, 321, 743.
(4) Kametani, T.; Ogasawara, K. J. J. Chem. Soc. 1967, 21,
2208.
(5) Ninomiya, I.; Yasui, J.; Kiguchi, T. Heterocycles 1977, 6,
1855.
(6) Takano, S.; Satoh, S.; Ogasawara, K. Heterocycles 1987, 26,
1483.
(7) Yasuda, S.; Hirasawa, T.; Yoshida, S.; Hanaoka, M. Chem.
Pharm. Bull. 1989, 37, 1682.
(8) Sielecki Thais, M.; Meyers, A. I. J. Org. Chem. 1992, 57,
3673.
Scheme 4 Conversion of 9 and 11 to the alkaloids 1 and 2
The application of a (NHC)Pd(h3-allyl)Cl complex to the
palladium-mediated intramolecular ring-closing aryl-
amination of 7-benzyloxy-1-(2-bromo-4,5-dimethoxy-
benzyl)-1,2,3,4-tetrahydro-6-methoxyisoquinoline
(8)
and 7-benzyloxy-1-(2-chloro-4,5-methy-len-dioxyben-
zyl)-1,2,3,4-tetrahydro-6-methoxyisoquinoline (10) re-
sulting in the formation of 2-benzyloxy-5,6,12,12a-
tetrahydro-3,9,10-trimethoxydibenz-[b,g]-indolizine (9)
and 2-benzyloxy-5,6,12,12a-tetrahydro-3-methoxy-9,10-
methylendioxydibenz-[b,g]-indolizine (11), respectively
demonstrates the usefulness of such catalyst in alkaloid
total synthesis. Whereas 6 was proven recently to be the
best catalyst for intermolecular aryl-amination, 7 proved
to be the superior catalyst in the two intramolecular aryl-
amination reactions presented here. One possible explana-
tion for these results can be the lower steric hindrance of
the NHC-ancilliary ligand (IMes vs. IPr and SIPr) of the
catalyst, resulting in the less sterically crowded reactive
center. This hypothesis is presently being tested on even
less sterically demanding NHC in the (NHC)Pd(h3-al-
(9) Orito, K.; Harada, R.; Uchiiti, S.; Tokuda, M. Org. Lett.
2000, 2, 1799.
(10) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Acc.
Chem. Res. 1998, 31, 852. (c) Viciu, M. S.; Kissling, R. M.;
Stevens, E. D.; Nolan, S. P. Org. Lett. 2002, 4, 2229.
(11) Viciu, M. S.; Germaneau, R. F.; Nolan, S. P. Org. Lett. 2002,
4, 4053.
(12) Viciu, M. S.; Germaneau, R. F.; Navarro-Fernandez, O.;
Stevens, E. D.; Nolan, S. P. Organometallics 2002, 21, 5470.
Synlett 2003, No. 12, 1871–1873 © Thieme Stuttgart · New York