C O M M U N I C A T I O N S
Figure 3. Intracellular fluorescence change as a function of time following
irradiation and/or TPA treatment. HeLa cells were microinjected with peptide
2 and subsequently (A) irradiated and treated with TPA, (B) treated with
TPA in the absence of light, and (C) irradiated in the absence of TPA
Figure 1. Time-dependent change in fluorescence before and after in situ
illumination of caged peptide. The caged peptide 2 was incubated at 30 °C
with PKCR and the change in fluorescence measured for 10 (A), 20 (B), or
30 (C) min. Samples were then irradiated at the indicated time points. (Insert)
Partial photolysis of 2 followed by a second exposure to brief illumination.
See Supporting Information for details.
In summary, we have prepared a caged protein kinase sensor
via introduction of a serine moiety containing a photolytically labile
side-chain appendage. The presence of the latter affords control
over both the timing and amount of active sensor release. To the
best of our knowledge, compound 2 represents the first example
of a caged fluorescent reporter of intracellular enzymatic activity.
Acknowledgment. We thank Dr. Aigou Zhang and Mr. Yusuf
Ali for technical support and the NIH for funding.
Supporting Information Available: Experimental details of the
synthesis, characterization, photo-uncaging, and in vitro and in vivo
assays of compound 2 (PDF). This material is available free of charge
References
(1) (a) Nagai, Y.; Miyazaki, M.; Aoki, R.; Zama, R.; Zama, T.; Inouye, S.;
Hirose, K.; Lino, M.; Hagiwara, M. Nat. Biotechnol. 2000, 18, 313-6.
(b) Kurokawa, K.; Mochizuki, N.; Ohba, Y.; Mizuno, H.; Miyawaki, A.;
Matsuda, M. J. Biol. Chem. 2001, 276, 31305-10. (c) Zhang, J.; Ma, Y.;
Taylor, S. S.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 14997-
5003. (d) Ting, A. Y.; Kain, K. H.; Klemke, R. L.; Tsien, R. Y. Proc.
Natl. Acad. Sci. U.S.A. 2001, 98, 15003-8. (e) Sato, M.; Ozawa, T.;
Inukai, K.; Asano, T.; Umezawa, Y. Nat. Biotechnol. 2002, 20, 287-94.
(2) (a) Yeh, R. H.; Yan, X.; Cammer, M.; Bresnick, A. R.; Lawrence, D. S.
J. Biol. Chem. 2002, 277, 11527-11532. (b) Chen, C.-A.; Yeh, R. H.;
Lawrence, D. S. J. Am. Chem. Soc. 2002, 124, 3840-3841.
(3) (a) Goss, V. L.; Hocevar, B. A.; Thompson, L. J.; Stratton, C. A.; Burns,
D. J.; Fields, A. P. J. Biol. Chem. 1994, 269, 19074-19080. (b) Collas,
P. J. Cell Sci. 1998, 111, 1293-1303. (c) Passalacqua, M.; Patrone, M.;
Sparatore, B.; Pedrazzi, M.; Melloni, E.; Pontremoli, S. FEBS Lett. 1999,
453, 249-253. (d) Takai, Y.; Ogawara, M.; Tomono, Y.; Moritoh, C.;
Imajoh-Ohmi, S.; Tsutsumi, O.; Taketani, Y.; Inagaki, M. J. Cell Biol.
1996, 133, 141-149. (e) Varlamova, O.; Spektor, A.; Bresnick, A. R. J.
Muscle Res. Cell Motil. 2001, 22, 214-250.
Figure 2. Fluorescence change as a function of irradiation time. Peptide 2
was illuminated for (A) 0, (B) 15, (C) 30, (D) 45, and (E) 90 s and PKCR-
catalyzed activity subsequently sampled via fluorescence change.
possible to control the timing of protein kinase activity sampling
but also that activity measurements can be performed at multiple
stages as a function of cellular events. The latter is noteworthy
since it establishes that an inert sensor can be held in reserve so
that kinase activity can be assessed at multiple time points.
Finally, we examined the light-induced sampling of protein
kinase activity in living cells. The caged protein kinase fluorescent
substrate 2 was introduced into HeLa cells via microinjection.
Exposure of cells to the phorbol ester TPA activates PKC. We have
previously demonstrated that compound 1 serves as a specific sensor
for the conventional isoforms of PKC in living cells.2a However,
HeLa cells containing the caged derivative 2 fail to display a
fluorescent response upon exposure to TPA alone or upon exposure
to light in the absence of TPA. By contrast, a robust response is
observed when compound 2-containing HeLa cells are both
illuminated and treated with TPA (Figure 3).
(4) Nishikawa, K.; Toker, A.; Johannes, F. J.; Songyang, Z.; Cantley, L. C.
J. Biol. Chem. 1997, 272, 952-960.
(5) Wood, J. S.; Koszelak, M.; Liu, J.; Lawrence, D. S. J. Am. Chem. Soc.
1998, 120, 7145-7146.
(6) Others have reported the synthesis of side-chain caged serine: (a) Pirrung,
M. C.; Nunn, D. S. Bioorg. Med. Chem. Lett. 1992, 2, 1489-92. (b) Cook,
S. N.; Jack, W. E.; Xiong, X.; Danley, L. E.; Ellman, J. A.; Schultz, P.
G.; Noren, C. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1629-30.
(7) (a) Iversen, T.; Bundle, D. R. J. Chem. Soc., Chem. Commun. 1981, 1240-
1241 (b) Wessel, H.-P.; Iversen, T.; Bundle, D. R. J. Chem. Soc., Perkin
Trans. 1985, 1, 2247-2250.
(8) Allen, J. M.; Allen, S. K.; Baertschi, S. W. J. Pharm. Biomed. Anal. 2000,
24, 167-178.
JA037801X
9
J. AM. CHEM. SOC. VOL. 125, NO. 44, 2003 13359