Journal of the American Chemical Society
Article
Lopez Navarrete, J. T. Angew. Chem., Int. Ed. 2008, 47, 1443.
71, 3481. (e) Benniston, A. C.; Harriman, A. Chem. Soc. Rev. 2006, 35,
169.
(e) Pospísil, L.; Fiedler, J.; Hromadova,
Pecka, J.; Michl, J. J. Electrochem. Soc. 2006, 153, E179. (f) Funston, A.;
Kirby, J. P.; Miller, J. R.; Pospísil, L.; Fiedler, J.; Hromadova, M.;
Gal, M.; Pecka, J.; Valasek, M.; Zawada, Z.; Rempala, P.; Michl, J.
́ ́ ́
M.; Gal, M.; Valasek, M.;
(17) (a) Laine,
M.; Amouyal, E. J. Am. Chem. Soc. 2002, 124, 1364. (b) Laine,
Bedioui, F.; Amouyal, E.; Albin, V.; Berruyer−Penaud, F. Chem.Eur.
J. 2002, 8, 3162. (c) Laine, P.; Amouyal, E. Chem. Commun. 1999, 935.
(18) (a) Laine, P. P.; Campagna, S.; Loiseau, F. Coord. Chem. Rev.
2008, 252, 2552. (b) Laine, P. P.; Bedioui, F.; Loiseau, F.; Chiorboli,
C.; Campagna, S. J. Am. Chem. Soc. 2006, 128, 7510. (c) Laine, P. P.;
Loiseau, F.; Campagna, S.; Ciofini, I.; Adamo, C. Inorg. Chem. 2006,
45, 5538. (d) Laine, P. P.; Ciofini, I.; Ochsenbein, P.; Amouyal, E.;
Adamo, C.; Bedioui, F. Chem.Eur. J. 2005, 11, 3711. (e) Ciofini, I.;
Laine, P. P.; Bedioui, F.; Adamo, C. J. Am. Chem. Soc. 2004, 126,
10763.
́
P.; Bedioui, F.; Ochsenbein, P.; Marvaud, V.; Bonin,
́
P.;
́
́
́
́
J. Phys. Chem. A 2005, 109, 10862. (g) Porter, W. W.; Vaid, T. P.;
Rheingold, A. L. J. Am. Chem. Soc. 2005, 127, 16559. (h) Porter, W. W.;
Vaid, T. P. J. Org. Chem. 2005, 70, 5028.
(5) For selected work dealing with the multielectron reduction of
fullerenes, see: (a) Diener, M. D.; Alford, J. M. Nature 1998, 393, 668.
(b) Weaver, M. J.; Gao, X. J. Phys. Chem. 1993, 97, 332. (c) Yang, Y.;
Arias, F.; Echegoyen, L.; Chibante, L. P. F; Flanagan, S.; Robertson, A.;
́
́
́
́
́
Wilson, L. J. J. Am. Chem. Soc. 1995, 117, 7801. (d) Xie, Q.; Per
́
ez-
Cordero, E.; Echegoyen, L. J. Am. Chem. Soc. 1992, 114, 3978.
(19) (a) Benniston, A. C.; Harriman, A.; Li, P.; Rostron, J. P.;
Harrington, R. W.; Clegg, W. Chem.Eur. J. 2007, 13, 7838. (b) Beer,
P. D.; Chen, Z.; Grieve, A.; Haggitt, J. J. Chem. Soc., Chem. Commun.
1994, 2413. (c) Kodaka, M.; Kubota, Y. J. Chem. Soc., Perkin Trans. 2
1999, 891. (d) Willner, I.; Ayalon, A.; Rabinovitz, M. New J. Chem.
1990, 14, 685. (e) Chen, P.; Curry, M.; Meyer, T. J. Inorg. Chem. 1989,
28, 2271. (f) Wardman, P. J. Phys. Chem. Ref. Data 1989, 18, 1637.
(g) Thummel, R. P.; Lefoulon, F.; Chirayil, S.; Goulle, V. J. Org. Chem.
(6) For selected examples concerning oxidizable electrophores (i.e.,
potentially multielectron donors), that is, star-shaped semirigid and
coupled multicenter electrophores, see: (a) Diallo, A. K.; Absalon, C.;
Ruiz, J.; Astruc, D. J. Am. Chem. Soc. 2011, 133, 629. (b) Lambert, C.
Angew. Chem., Int. Ed. 2005, 44, 7337 and references therein.
(7) Han, Z.; Vaid, T. P.; Rheingold, A. L. J. Org. Chem. 2008, 73, 445.
(8) (a) Evans, D. H. Chem. Rev. 2008, 108, 2113 and references
therein. (b) Evans, D. H.; Hu, K. J. Chem. Soc., Faraday Trans. 1996,
92, 3983.
1988, 53, 4745. (h) Hunig, S.; Berneth, H. Top. Curr. Chem. 1980, 92, 1.
̈
(20) The same trends are also often observed for electrophores that
function as electron donors (oxidation regime). Examples are mainly
found in the field of electromechanical actuators, even though the
interplay between structural and redox properties is envisaged from
the reverse standpoint of the above-mentioned one. The tuning of the
structure is the mechanical output whereas the electrochemistry is the
input. Owing to the nature of the electroactive components involved
(e.g., oligothienyl or analogues), the HOMO is in this case primarily
impacted and thus, oxidation processes. (a) Marsella, M. J.; Reid, R. J.;
Estassi, S.; Wang, L.-S. J. Am. Chem. Soc. 2002, 124, 12507.
(b) Jousselme, B.; Blanchard, P.; Gallego-Planas, N.; Delaunay, J.;
Allain, M.; Richomme, P.; Levillain, E.; Roncali, J. J. Am. Chem. Soc.
2003, 125, 2888. (c) Jousselme, B.; Blanchard, P.; Levillain, E.;
Delaunay, J.; Allain, M.; Richomme, P.; Rondeau, D.; Gallego-Planas,
N.; Roncali, J. J. Am. Chem. Soc. 2003, 125, 1363. (d) Jousselme, B.;
Blanchard, P.; Gallego-Planas, N.; Levillain, E.; Delaunay, J.; Allain, M.;
Richomme, P.; Roncali, J. Chem.Eur. J. 2003, 9, 5297. (e) Jousselme,
B.; Blanchard, P.; Allain, M.; Levillain, E.; Dias, M.; Roncali, J. J. Phys.
Chem. A 2006, 110, 3488.
(21) For one such rare example, but dealing with the steric control of
the electron-donating ability of a molecule (oxidation regime), see:
Bellec, N.; Boubekeur, K.; Carlier, R.; Hapiot, P.; Lorcy, D.; Tallec, A.
J. Phys. Chem. A 2000, 104, 9750.
(22) Bistable electrophores typically made up of a bridging
photochromic switchable unit and two pyridinium termini, for
instance, are beyond the scope of the present work. Indeed, the
energy change of redox-active MOs not only originates from structural
modifications but also largely stems from alterations in the electronic
structure of the photochromic linker; see: (a) Gilat, S. L.; Kawai, S. H.;
Lehn, J.-M. Chem.Eur. J. 1995, 1, 275. (b) Gilat, S. L.; Kawai, S. H.;
Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1993, 1439.
(9) Fortage, J.; Tuyer
F.; Campagna, S.; Griveau, S.; Bedioui, F.; Ciofini, I.; Laine,
Chem.Eur. J. 2010, 16, 11047.
(10) Peltier, C.; Adamo, C.; Laine,
̀
as, F.; Ochsenbein, P.; Puntoriero, F.; Nastasi,
́
P. P.
́
P. P.; Campagna, S.; Puntoriero,
F.; Ciofini, I. J. Phys. Chem. A 2010, 114, 8434.
(11) Fortage, J.; Peltier, C.; Nastasi, F.; Puntoriero, F.; Tuyer
Griveau, S.; Bedioui, F.; Adamo, C.; Ciofini, I.; Campagna, S.; Laine,
P. J. Am. Chem. Soc. 2010, 132, 16700.
(12) Prototypical complex for a single-electron storage: (a) Astruc,
D.; Hamon, J.-R.; Althoff, G.; Roman, E.; Batail, P.; Michaud, P.;
Mariot, J.-P.; Varret, F.; Cozak, D. J. Am. Chem. Soc. 1979, 101, 5445.
(b) Hamon, J.-R.; Astruc, D.; Michaud, P. J. Am. Chem. Soc. 1981, 103,
758.
(13) For strategies involving purely organic molecules for two-
electron storage, referred to as “super electron donors” (SEDs), see for
instance ref 4g and the following: (a) Murphy, J. A.; Garnier, J.; Park,
S. R.; Schoenebeck, F.; Zhou, S.-Z.; Turner, A. T. Org. Lett. 2008, 10,
1227. (b) Murphy, J. A.; Zhou, S.-Z.; Thomson, D. W.; Schoenebeck,
F.; Mahesh, M.; Park, S. R.; Tuttle, T.; Berlouis, L. E. A. Angew. Chem.,
Int. Ed. 2007, 46, 5178. (c) Richardson, R. D.; Wirth, T. Chem. Unserer
Z. 2008, 42, 190.
(14) For strategies relying on C−C bond forming/breaking, but
involving inorganic including organometallic (supra)molecular com-
pounds, also for two-electron storage, see: (a) Venkatesan, K.;
Blacque, O.; Fox, T.; Alfonso, M.; Schmalle, H. W.; Berke, H.
Organometallics 2004, 23, 1183. (b) Camp, C.; Mougel, V.; Horeglad,
̀
as, F.;
P.
́
́
́
P.; Pecaut, J.; Mazzanti, M. J. Am. Chem. Soc. 2010, 132, 17374.
(c) Floriani, C.; Solari, E.; Franceschi, F.; Scopelliti, R.; Belanzoni, P.;
Rosi, M. Chem.Eur. J. 2001, 7, 3052. (d) Franceschi, F.; Solari, E.;
Scopelliti, R.; Floriani, C. Angew. Chem., Int. Ed. 2000, 39, 1685.
(e) Rosi, M.; Sgamellotti, A.; Franceschi, F.; Floriani, C. Chem.Eur.
J. 1999, 5, 2914. (f) Franceschi, F.; Solari, E.; Floriani, C.; Rosi, M.;
Chiesi-Villa, A.; Rizzoli, C. Chem.Eur. J. 1999, 5, 708.
(23) (a) Bally, T. Nat. Chem. 2010, 2, 165. (b) Puschmann, F. F.;
Harmer, J.; Stein, D.; Ruegger, H.; de Bruin, B.; Grutzmacher, H.
̈
̈
Angew. Chem., Int. Ed. 2010, 49, 385.
(15) For selected examples of alternative strategies that rely on
nanoscale architectures like macrocycles or dendrimers decorated with
redox-active components, which could function as molecular batteries,
see: (a) Mayor, M.; Lehn, J.-M. J. Am. Chem. Soc. 1999, 121, 11231.
(b) Astruc, D. New J. Chem. 2011, 35, 764. and references therein.
(c) Ronconi, C. M.; Stoddart, J. F.; Balzani, V.; Baroncini, M.; Ceroni,
P.; Giansante, C.; Venturi, M. Chem.Eur. J. 2008, 14, 8365.
(16) Selected recent references: (a) Meylemans, H. A.; Damrauer, N.
H. Inorg. Chem. 2009, 48, 11161. (b) Hanss, D.; Wenger, O. S. Eur. J.
Inorg. Chem. 2009, 3778. (c) Indelli, M. T.; Chiorboli, C.; Flamigni, L.;
De Cola, L.; Scandola, F. Inorg. Chem. 2007, 46, 5630. (d) Benniston,
A. C.; Harriman, A.; Li, P.; Patel, P. V.; Sams, C. A. J. Org. Chem. 2006,
(24) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104,
4891.
(25) (a) Hogiu, S.; Dreyer, J.; Pfeiffer, M.; Brzezinka, K.-W.;
Werncke, W. J. Raman Spectrosc. 2000, 31, 797. (b) Catalan, J.; Garcia
de Paz, J. L.; Reichardt, C. J. Phys. Chem. A 2010, 114, 6226.
(26) A similar strategy based on chemical substitution was, for instance,
applied by Hapiot, Lorcy and co-workers to investigate the potential
inversion observed in vinylogous tetrathiafulvalene derivatives: see ref 21.
(27) Amongst the 19 model electrophores and 13 ferrocenyl-based
dyads show in Chart 1, 14 electrophores and 9 dyads are new. These
were synthesized for the present study, with the exception of (q)Lu-
XP along with the associated ferrocenyl dyad, which could not be
2704
dx.doi.org/10.1021/ja210024y | J. Am. Chem.Soc. 2012, 134, 2691−2705