2918
K.N. Kumar, R. Ramesh / Spectrochimica Acta Part A 60 (2004) 2913–2918
Table 5
[2] P.K. Battacharya, Proc. Ind. Acad. Sci. (Chem. Sci.) 102 (1990)
247.
Antibacterial activities of Ru(II) carbonyl Schiff base complexes
[3] P. Senguptha, S. Ghosh, T.C.W. Mak, Polyhedron 20 (2001) 975.
[4] J. Chakraborty, R.N. Patel, J. Ind. Chem. Soc. 73 (1996) 191.
[5] R. Klement, F. Stock, H. Ellias, H. Paulus, P. Pelikan, M. Valko, M.
Mazur, Polyhedron 18 (1999) 3617.
[6] B. De Clercq, F. Verpoort, Macromolecules 35 (2002) 8943.
[7] T. Opstal, F. Verpoort, Synletters 6 (2002) 935.
[8] T. Opstal, F. Verpoort, Angew. Chem. Int. Ed. 42 (2003) 2876.
[9] J.P. Collman, L.S. Hegedus, Principles and Application of Organ-
otransition Metal Chemistry, University Science Book, California,
1980.
[10] T. Katsuki, Coord. Chem. Rev. 140 (1995) 189.
[11] M.M. Taquikahan, Z.A. Shaik, Ind. J. Chem. 31A (1992) 191.
[12] L.W. hung, C.C. Ming, Inorg. Chem. 28 (1989) 4619.
[13] K.S. Murray, A.M. Vanden Bergen, B.O. West, Aust. J. Chem. 31
(1978) 203.
[14] R. Ramesh, G. Venkatachalam, Ind. J. Chem. 41A (2002) 531.
[15] R. Ramesh, M. Sivagamasundari, Synth. React. Inorg. Met.-Org.
Chem. 33 (2003) 899.
Complexes
Diameter of inhibition zone (mm)
S. aureus (209p)
E. coli (ESS 2231)
Vanmet
Vanampy
Vanchx
1
2
3
4
5
6
7
8
9
10
11
12
–
–
–
–
–
–
10
12
11
10
11
10
10
9
11
11
10
10
9
9
10
9
9
10
9
10
10
10
11
[16] R. Ramesh, S. Maheswaran, J. Inorg. Biochem. 96 (2003) 457.
[17] R. Ramesh, Inorg. Chem. Commun. 7 (2004) 274.
[18] N. Ahmed, J.J. Lewison, S.D. Robinson, M.F. Uttley, Inorg. Synth.
15 (1974) 48.
Symbol “–” denotes no activity.
consistent with earlier reports [37–39]. The possible mode
of increased toxicity of the ruthenium complexes compared
to that of the free ligands may be explained in terms of
Tweedy’s chelation theory [40]. Chelation considerably re-
duces the polarity of the metal ion because of partial shar-
ing of its positive charge with donor groups and possible
-electron delocalization over the whole chelate ring. Such
a chelation could enhance the lipophililic character of the
central metal atom, which subsequently favors it permeation
through the lipid layers of cell membrane [41] and blocking
the metal binding sites on enzymes of microorganism. The
variation in the effectiveness of different compound against
different organisms depends either on the impermeability of
the cells of the microbes or differences in ribosomes of mi-
crobial cells. Though there is a marked increase in the bac-
terial activity of ruthenium complexes as compared to the
free ligands, it could not reach the effectiveness of Strepto-
mycin [16].
[19] S. Gopinathan, I.R. Unny, S.S. Deshpande, C. Gobinathan, Ind. J.
Chem. 25A (1986) 1015.
[20] B. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tachell, Vogel’s
Textbook of Practical Organic Chemistry, fifth ed., 1982.
[21] M.J. Relezar, E.C.S. Chan, N.R. Krieg, Microbiology, fifth ed.,
McGraw-Hill, New York, 1998.
[22] J. Uttamchandhine, R.M. Kapoor, Trans. Met. Chem. 3 (1918) 282.
[23] S.A. Ali, A.A. Soliman, M.M. Aboaly, R.M. Ramadan, J. Coord.
Chem. 55 (2002) 1161.
[24] R.C. Maurya, P. Patel, S. Rajput, Synth. React. Inorg. Met.-Org.
Chem. 23 (2003) 817.
[25] K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Co-ordination Compounds, Wiley/Interscience, New York, 1971.
[26] J.R. Ferraro, Low Frequency Vibrations of Inorganic and
Co-ordination Compounds, Plenum Press, New York, 1971.
[27] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsiever,
New York, 1984.
[28] K. Chichak, U. Jacquenard, N.R. Branda, Eur. J. Inorg. Chem. (2002)
357.
[29] K. Natarajan, R.K. Poddar, C. Agarwala, J. Inorg. Nucl. Chem. 39
(1977) 431.
[30] L.D. Field, B.A. Messerle, L. Soler, I.E. Buys, T. Hambley, J. Chem.
Soc. Dalton Trans. (2001) 1959, and references therein.
[31] M.S. El-Shahawi, A.F. Shoair, Spectrochim. Acta A 60 (2004)
121.
[32] J.R. Dyer, Application of Absorption Spectroscopy of Organic Com-
pounds, Prentice-Hall, New Jersey, 1978.
Acknowledgements
We express sincere thanks to Prof. P.R. Athappan, School
of Chemistry, Madurai Kamaraj University, for providing
cyclic voltammetric facility. The authors also thank Nicholas
Piramal India Ltd., Mumbai, for the evaluation of biological
studies.
[33] S. Pal, S. Pal, J. Chem. Soc. Dalton Trans (2002) 2102.
[34] R. Nicholson, I. Shain, Anal. Chem. 36 (1964) 706.
[35] A.M. Bond, R. Colton, D.R. Mann, Inorg. Chem. 29 (1990) 4665.
[36] A. Basu, T.G. Kasan, N.Y. Sapre, Inorg. Chem. 27 (1988) 4539.
[37] C. Perez, M. Pauli, P. Bazer que, Acta Biol. Et. Med. Exp. 15 (1990)
113.
[38] A. Katritzky, Comprehensive Heterocyclic Chemistry, vol. 4, Perga-
mon, New York, 1984.
[39] R.S. Srivastava, J. Inorg. Nucl. Chem. 42 (1990) 1526.
[40] B.G. Tweedy, Phytopathalogy 55 (1964) 910.
[41] S.C. Singh Jadon, N. Gupta, R.V. Singh, Ind. J. Chem. 34A (1995)
733.
References
[1] A.M. El-Hendawy, A.H. Alkubasi, A. El-Ghany, K. El-Kourashym,
M.N. Sharab, Polyhedron 20 (2001) 975.