J. Li et al. / Journal of Organometallic Chemistry 695 (2010) 2618e2628
2627
(f) M. Diéguez, O. Pàmies, A. Ruiz, Y. Díaz, S. Castillón, C. Claver, Coord. Chem.
Rev. 248 (2004) 2165e2192.
[3] For reviews: (a) M. Diéguez, O. Pàmies, C. Claver, Tetrahedron: Asymmetry 15
(2004) 2113e2122;
in CDCl3 and transferred to an NMR tube. The chemical conversion
was determined by integration of corresponding 31P resonances in
the 31P NMR spectra. Diethyl ethylphosphonate (10
to the respective samples as an internal standard.
mL) was added
(b) K.N. Gavrilov, O.G. Bondarev, A.V. Korostylev, A.I. Polosukhin, V.N. Tsarev,
N.E. Kadilnikov, S.E. Lyubimov, A.A. Shiryaev, S.V. Zheglov, H. Gais,
V.A. Davankov, Chirality 15 (2003) S97eS103;
(c) M. Diéguez, C. Claver, O. Pàmies, Eur. J. Org. Chem. (2007) 4621e4634;
(d) P.C. Kamer, A. van Rooy, G.C. Schoemaker, P.W.N.M. van Leeuwen, Coord.
Chem. Rev. 248 (2004) 2409e2424.
4.10. X-ray crystal structure determinations
X-ray reflections were measured with Mo-Ka radiation
[4] For examples: (a) D.A. Albisson, R.B. Bedford, P.N. Scully, Tetrahedron Lett. 39
(1998) 9793e9796;
ꢀ
(
l
¼ 0.71073 A) on a Nonius KappaCCD diffractometer with rotating
anode at a temperature of 150 K up to a resolution of (sin
q/
(b) R.B. Bedford, S.L. Welch, Chem. Commun. (2001) 129e130;
(c) R.B. Bedford, S.L. Hazelwood, D.A. Albisson, Organometallics 21 (2002)
2599e2600;
ꢀꢁ1
¼ 0.65 A . Integration of the intensities was performed with
l
)
max
EvalCCD [41] and absorption correction with SADABS [42]. The
structures were solved with Direct Methods (program SHELXS-97
[43] for complexes 1 and 3; program SIR-97 [44] for complex 7).
Refinement was performed with SHELXL-97 [43] against F2 of all
reflections. Non hydrogen atoms were refined with anisotropic
displacement parameters. Hydrogen atoms were located in differ-
ence Fourier maps (complexes 1 and 7) or introduced in calculated
positions (complex 3) and refined with a riding model. Geometry
calculations and checking for higher symmetry was performed
with the PLATON program [45]. Further details are given in Table 1.
(d) R.B. Bedford, S.L. Hazelwood, M.E. Limmert, D.A. Albisson, S.M. Draper,
P.N. Scully, S.J. Coles, M.B. Hursthouse, Chem.dEur. J. 9 (2003) 3216e3227;
(e) R.B. Bedford, M. Betham, S.J. Coles, P.N. Horton, M. López-Sáez, Polyhedron
25 (2006) 1003e1010.
[5] For examples: (a) F. Miyazaki, K. Yamaguchi, M. Shibasaki, Tetrahedron Lett.
40 (1999) 7379e7383;
(b) R.A. Baber, R.B. Bedford, M. Betham, M.E. Blake, S.J. Coles, M.F. Haddow,
M.B. Hursthouse, A.G. Orpen, L.T. Pilarski, P.G. Pringle, R.L. Wingad, Chem.
Commun. (2006) 3880e3882;
(c) M. Rubio, A. Suárez, D. del Río, A. Galindo, E. Álvarez, A. Pizzano, Dalton
Trans. (2007) 407e409;
(d) O.A. Wallner, V.J. Olsson, L. Eriksson, K.J. Szabó, Inorg. Chim. Acta 359
(2006) 1767e1772;
(e) J. Aydin, K.S. Kumar, M.J. Sayah, O.A. Wallner, K.J. Szabo, J. Org. Chem. 72
(2007) 4689e4697.
[6] For reviews: (a) E.J. Corey, X.M. Cheng, The Logic of Chemical Synthesis. John
Wiley & Sons, New York, 1989;
4.10.1. Complex 1
With the matrix (1,0,ꢁ2/ꢁ1,0,0/0,1,0) the triclinic cell parame-
ters can be transformed into a pseudo-monoclinic C-centered cell.
The a-axis of the triclinic cell then becomes the b-axis of the
pseudo-monoclinic cell. The two independent molecules in the
triclinic cell are related by an approximate twofold rotation roughly
about the a-axis. The reflection intensities only support a triclinic
symmetry and there is no indication for twinning.
(b) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457e2483;
(c) J.P. Corbet, G. Mignani, Chem. Rev. 106 (2006) 2651e2710;
(d) N. Marion, S.P. Nolan, Acc. Chem. Res. 41 (2008) 1440e1449;
(e) B.D. Sherry, A. Fürstner, Acc. Chem. Res. 41 (2008) 1500e1511;
(f) E. Negishi, Acc. Chem. Res. 15 (1982) 340e348;
(g) E.A.B. Kantchev, C.J. O’Brien, M.G. Organ, Angew. Chem., Int. Ed. 46 (2007)
2768e2813;
(h) S.R. Dubbaka, P. Vogel, Angew. Chem., Int. Ed. 44 (2005) 7674e7684.
[7] For reviews: (a) D.H. Valentine, J.H. Hillhouse, Synthesis 16 (2003)
2437e2460;
4.10.2. Complex 3
(b) D. Mingos, P. Michael, Mod. Coord. Chem. (2002) 69e78;
(c) B.L. Shaw, J. Organomet. Chem. 200 (1980) 307e318;
(d) T.B. Rauchfuss, In: L. Pignolet (Ed.), Homogeneous Catalysis with Metal
Phosphine Complexes, Plenum Press, 1983, p. 239e256
[8] For examples: (a) D.S. Glueck, Chem.dEur. J. 14 (2008) 7108e7117;
(b) K.D. Berlin, G.B. Butler, Chem. Rev. 60 (1960) 243e260;
(c) A.L. Schwan, Chem. Soc. Rev. 4 (2004) 218e224;
Besides the ordered THF molecule, the crystal structure contains
3
ꢀ
a large void (852.4 A /unit cell), filled with disordered THF solvent
molecules. Their contribution to the structure factors was secured
by back-Fourier transformation using the SQUEEZE routine of the
program PLATON [45], resulting in 60 electrons/unit cell.
(d) I.P. Beletskaya, A.V. Cheprakov, Coord. Chem. Rev. 248 (2004) 2337e2364;
(e) K.M. Pietrusiewicz, M. Zablocka, Chem. Rev. 94 (1994) 1375e1411;
(f) Y. Yoshinori, T. Imamoto, Heteroatom. Chem. 20 (1999) 227e248;
(g) D.S. Glueck, Synlett 17 (2007) 2627e2634;
(h) A. Grabulosa, J. Granell, G. Muller, Coord. Chem. Rev. 251 (2007) 25e90;
(i) J.J. Feng, X.F. Chen, M. Shi, W.L. Duan, J. Am. Chem. Soc. 132 (2010)
5562e5563.
Acknowledgements
We gratefully thank Utrecht University for financial support.
This work was supported in part (ML, ALS) by the Council for the
Chemical Sciences of the Netherlands Organization for Scientific
Research (CW-NWO).
[9] M. Murata, S.L. Buchwald, Tetrahedron 60 (2004) 7397e7403.
[10] C. Huang, X. Tang, H. Fu, Y. Jiang, Y. Zhao, J. Org. Chem. 71 (2006) 5020e5022.
[11] For examples: (a) K.Q. Yu, W. Sommer, M. Weck, C.W. Jones, J. Catal. 226
(2004) 101e110;
Appendix A. Supplementary material
(b) K.Q. Yu, W. Sommer, J.M. Richardson, M. Weck, C.W. Jones, Adv. Synth.
Catal. 347 (2005) 161e171;
CCDC 750414, 750415, and 750416 contain the supplementary
crystallographic data for complex 1, complex 3 and complex 7 in
this paper. These data can be obtained free of charge from The
(c) J.L. Bolliger, O. Blacque, C.M. Frech, Chem.dEur. J. 14 (2008) 7969e7977.
[12] For examples: (a) W. Wei, Y. Qin, M. Luo, P. Xia, M.S. Wong, Organometallics
27 (2008) 2268e2272;
ꢂ
ꢂ
(b) B. Inecs, R. SanMartin, F. Churruca, E. Domicnguez, M.K. Urtiaga,
M.I. Arriortua, Organometallics 27 (2008) 2833e2839;
(c) Q.L. Luo, S. Eibauer, O. Reiser, J. Mol. Catal. A: Chem. 268 (2007) 65e69;
(d) J.L. Bolliger, O. Blacque, C.M. Frech, Angew. Chem., Int. Ed. 46 (2007)
6514e6517.
References
[13] For examples: (a) E. Mas-Marzá, A.M. Segarra, C. Claver, E. Peris,
Elena Fernandez, Tetrahedron Lett. 44 (2003) 6595e6599;
(b) F. Churruca, R. SanMartin, I. Tellitu, E. Domínguez, Synlett (2005)
3116e3117.
[14] A. Albinati, S. Affolter, P.S. Pregosin, Organometallics 9 (1990) 379e387.
[15] For phosphine PCP pincer: (a) D. Olsson, P. Nilsson, M. El Masnaouy,
O.F. Wendt, Dalton Trans. 11 (2005) 1924e1929;
[1] For reviews: (a) D.S. Marynick, J. Am. Chem. Soc. 106 (1984) 4064e4065;
(b) P.B. Dias, M.E. Minas de Piedade, J.A. Martinho Simões, Coord. Chem. Rev.
135 (1994) 737e807;
(c) R.H. Crabtree, The Organometallic Chemistry of The Transition Metals,
fourth ed. John Wiley & Sons, Inc., Hoboken, NJ, 2005;
(d) P.W.N.M. van Leeuwen, Homogeneous Catalysis. Kluwer Academic
Publisher, Dordrecht, The Netherlands, 2003.
For phosphonite pincer: (b) J.-F. Gong, Y.-H. Zhang, M.P. Song, C. Xu, Organ-
ometallics 26 (2007) 6487e6492.
[16] R.B. Bedford, M. Betham, J.P.H. Charmant, M.F. Haddow, A.G. Orpen,
L.T. Pilarski, S.J. Coles, M.B. Hursthouse, Organometallics 26 (2007)
6346e6353.
[17] For examples: (a) H. Lebel, S. Morin, V. Paquet, Org. Lett. 5 (2003) 2347e2349;
(b) R.J. Detz, S.A. Heras, R. de Gelder, P.W.N.M. van Leeuwen, H. Hiemstra,
J.N.H. Reek, J.H. van Maarseveen, Org. Lett. 8 (2006) 3227e3230;
[2] For reviews: (a) S. Díez-González, S.P. Nolan, Acc. Chem. Res. 41 (2008)
349e358;
(b) J. Klosin, C.R. Landis, Acc. Chem. Res. 40 (2007) 1251e1259;
(c) S.A. Macgregor, Chem. Soc. Rev. (2007) 67e76;
(d) M.J. Burk, Acc. Chem. Res. 33 (2000) 363e372;
(e) W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029e3070;