R. Rosseto et al. / Tetrahedron Letters 45 (2004) 7371–7373
7373
10. Yuan, Y.; Schoenwaelder, S. M.; Salem, H. H.; Jackson,
S. P. J. Biol. Chem. 1996, 271, 27090–27098.
function of lysophosphatidic acid to give the lysophos-
phatidylcholine 2 isolated in 98% yield.
11. Yuan, Y.; Jackson, S. P.; Newnham, H. H.; Mitchell,
C. A.; Salem, H. H. Blood 1995, 86, 4166–4174.
12. Marathe, G. K.; Silva, A. R.; de Castro Faria Neto, H. C.;
Tjoelker, L. W.; Prescott, S. M.; Zimmerman, G. A.;
McIntyre, T. M. J. Lipid Res. 2001, 42, 1430–1437.
13. Kuglyama, K.; Kerns, S.; Morrisett, J. D.; Roberts, R.;
Henry, P. D. Nature 1990, 344, 160–162.
14. (a) Chevallier, J.; Sakai, N.; Robert, F.; Kobayashi, T.;
Gruenberg, J.; Matile, S. Org. Lett. 2000, 2, 1859–1861;
(b) Wang, A.; Loo, R.; Chen, Z.; Dennis, E. A. J. Biol.
Chem. 1997, 272, 22030–22036.
15. Bibak, N.; Hajdu, J. Tetrahedron. Lett. 2003, 44,
5875–5877.
16. Srisiri, W.; Lee, Y. S.; OÕBrien, D. F. Tetrahedron Lett.
1995, 36, 5911–5914.
17. Using 1,2-dimethoxyethane as the solvent turned out to be
important, in MeCN–CH2Cl2 mixture the reduction was
slow, and the yield of the alcohol was low (ꢀ30%):
Takahashi, S.; Cohen, L. A. J. Org. Chem. 1970, 35,
1505–1508.
In summary, the synthesis presented here provides a
rapid and efficient method for the preparation of lyso-
phosphatidic acids and lysophosphatidylcholines, and
it should be applicable to the development of a series
of new synthetic lysophospholipid derivatives with the
desired target structures for biological and physico-
chemical studies. In addition, elaboration of the alcohol
function by selective sodium borohydride reduction of
the p-nitrophenyl ester function, in the presence of other
carboxylic ester groups, should provide a useful new
strategy not only for the synthesis of glycerol deriva-
tives, but also in carbohydrate chemistry, and in the syn-
thesis of natural products where selective manipulation
of multiple hydroxyl groups is required. Work toward
application of the method for preparation of functional-
ized lysophospholipids is currently underway in our
laboratory.20
18. We have used a base-labile variant of the original
phosphoramidite method in order to prevent cleavage of
the sn-2-tetrahydropyranyl group: Perich, J. W.; Johns,
R. B. Tetrahedron Lett. 1988, 29, 2369–2372.
Acknowledgements
This work was supported by the National Institutes of
Health, including grants S06 GM/HD48680 and T34
GM08395.
19. Roodsari, F. S.; Wu, D.; Pum, G. S.; Hajdu, J. J. Org.
Chem. 1999, 64, 7727–7737.
20. Selected data: 5: IR: (cmꢁ1) 3300, 1762, 1714, 1529, 1207,
1126; 1H NMR (CDCl3, 200MHz) d 0.87 (t, 3H, J = 6Hz),
1.24 (s br, 24H), 1.58 (m br, 2H), 2.36 (t, 2H, J = 7.4Hz),
4.52–4.69 (m, 3H), 7.32 (d, 2H, J = 9Hz), 8.29 (d, 2H,
9Hz); 13C NMR (CDCl3, 50MHz) d 14.06, 22.63, 24.82,
29.03, 29.18, 29.30, 29.39, 29.54, 29.60, 29.62, 31.87, 33.93,
64.94, 69.81, 122.16, 125.33, 145.74, 154.61, 169.95,
173.64; Rf (CHCl3/CH3CN 5:1) = 0.65. Anal. Calcd for
C25H39NO7: C 64.49, H 8.44, N 3.01. Found: C 64.85, H
8.49, N 2.88. FAB MS calcd for MNa+ (C25H39NO7Na)
References and notes
1. (a) Moolenaar, W. H. J. Biol. Chem. 1995, 270,
12949–12952; (b) Moolenaar, W. H. Exp. Cell. Res.
1999, 253, 230–238; (c) Tigyi, G.; Parrill, A. L. Prog.
Lipid Res. 2003, 42, 498–526.
2. Goetzl, E. J.; An, S. FASEB J. 1998, 12, 1589–1598.
3. McPhail, L. In Biochemistry of Lipids, Lipoproteins and
Membranes; 4th ed.; Vance, D. E., Vance, J. E., Eds.;
Elsevier Science: Amsterdam, 2002; pp 315–340.
4. (a) Sugiura, T.; Tokumura, A.; Gregory, L.; Nouchi, T.;
Weintraub, S. T.; Hanahan, D. J. Arch. Biochem. Biophys.
1994, 311, 358–368; (b) Tokumura, A.; Fukuzawa, K.;
Isobe, J.; Tsukatani, H. Biochem. Biophys. Res. Commun.
1981, 99, 391–398.
5. Tokumura, A.; Fukuzawa, K.; Tsukatani, H. J. Pharm.
Pharmacol. 1982, 34, 514–516.
6. (a) Tokumura, A.; Fukuzawa, K.; Akamatsu, Y.; Tsuka-
tani, H. Lipids 1978, 13, 468–475; (b) Tokumura, A. Prog.
Lipid Res. 1995, 34, 151–184.
7. (a) Imamura, F.; Horai, T.; Mukai, M.; Shinkai, K.;
Sawada, M.; Akedo, H. Biochem. Biophys. Res. Commun.
1993, 193, 497–503; (b) Stam, J. C.; Michiels, F.; Van der
Kammen, R. A.; Moolenaar, W. H.; Collard, J. G. EMBO
J. 1998, 17, 4066–4074.
1
488.2624, found: 488.2611. 7: IR (CHCl3): 1732cmꢁ1; H
NMR (CDCl3) d: 0.86 (t, 3H, J = 6.8Hz), 1.24 (s, 24H),
1.50–1.58 (m, 6H), 1.59–1.61 (m, 2H), 2.26–2.31 (dt, 2H,
J = 7.7, 2.7Hz), 3.58–3.64 (m, 2H), 3.68–3.70, 4.08–4.12
(m, 2H), 3.88–3.94 (m, 2H), 4.52 (m, 1H), 4.74 (m, 1H);
13C NMR (CDCl3) d: 14.02, 19.00, 22.58, 24.86, 25.26,
29.08, 29.22, 29.30, 29.42, 29.58, 29.60, 29.62, 30.44, 31.70,
34.17, 58.62, 62.13, 64.19, 69.57, 97.85, 173.41; Rf (n-
hexane/EtOAc, 3:1) = 0.37; FAB MS calcd for MNH4þ
(C24H50NO5) 432.3689, found: 432.3698. Anal. Calcd for
C24H46O5: C 69.52, H 11.18. Found: C, 69.66, H 11.38. 8:
IR (CHCl3): 1734cmꢁ1 ; 1H NMR (CDCl3) d: 0.86 (t, 3H,
J = 6.8Hz), 1.24 (s, 24H), 1.42–1.50(m, 6H), 1.52–1.56 (m,
2H), 2.28–2.32 (m, 2H), 3.50–3.54 (m, 2H), 3.72 (m, 1H),
3.82–3.40 (m, 2H), 4.00–4.08 (m, 2H), 4.71 (m, 1H); 13C
NMR (CDCl3) d: 14.02, 20.00, 22.61, 24.88, 29.18, 29.30,
29.50, 29.64, 30.85, 31.86, 34.17, 61.98, 66.54, 67.56, 72.62,
98.50, 173.82. FAB MS calcd for MH+ (C24H46O8Pꢁ)
493.2930, found: 493.2913. 9: FAB MS calcd for
MH+ (C29H58NO8P) 580.3986, found 580.3970. 1: FAB
MS calcd for Mꢁ(C19H38O7Pꢁ) 409.2355, found:
409.2337.
8. Nixon, A. B.; OÕFlaherty, J. T.; Salyer, J. K.; Wykle, R. L.
J. Biol. Chem. 1999, 274, 5469–5473.
9. Fang, X.; Gibson, S.; Flower, M.; Furui, T.; Bast, R. C.,
Jr.; Mills, J. B. J. Biol. Chem. 1997, 272, 13683–13689.