detailed structural analysis of peptide 1 containing cis-
3-hydroxy-D-proline 2 (D-cis-3-Hyp) by multidimensional
NMR techniques. The choice of the sequence was guided
by the fact that similar sequences with proline in the
middle, flanked on both sides with apolar residues, are
known to adopt well-defined â-turn structures.7
Con for m a tion a l Stu d ies of P ep tid es
Con ta in in g cis-3-Hyd r oxy-D-p r olin e
T. K. Chakraborty,* P. Srinivasu, R. Vengal Rao,
S. Kiran Kumar, and A. C. Kunwar*
Indian Institute of Chemical Technology,
Hyderabad 500 007, India
chakraborty@iict.ap.nic.in
Received J une 30, 2004
Abstr a ct: Conformational analysis of peptides containing
cis-3-hydroxy-D-proline (D-cis-3-Hyp) by NMR studies re-
vealed that the 3-hydroxyl group in this amino acid plays a
significant role in the overall three-dimensional structures
of the peptides. When the D-cis-3-Hyp had its 3-hydroxyl
group protected as the benzyl (Bn) ether, the peptide
displayed a â-hairpin structure in both CDCl3 and DMSO-
d6. Even after the removal of the Bn group, the resulting
deprotected compound retained the same structure as in the
protected version in CDCl3. However, in polar solvent
DMSO-d6, the C-terminal strand of the hydroxyl-deprotected
peptide flipped to the side of the hydroxyl group, breaking
the hairpin to form a pseudo â-turn-like nine-membered ring
structure involving an intramolecular hydrogen bond be-
tween LeuNH f HypC3-OH.
Our studies revealed that whereas compound 1a
containing the O-Bn-protected D-cis-3-Hyp unit adopted
a â-hairpin structure in both nonpolar (CDCl3) and polar
(DMSO-d6) solvents, the free cis-3-hydroxyl group on the
proline ring in peptide 1b favored a pseudo â-turn-like
nine-membered ring structure involving an intramolecu-
lar hydrogen bond between the 3-hydroxyl and the Leu
amide located at the i + 2 position on the backbone in
polar solvent DMSO-d6. The structure of 1b in nonpolar
CDCl3 was, however, found to be similar to that of 1a .
This is in conformity with our earlier observations that
the free hydroxyl groups on sugar rings prevent furanoid
sugar amino acid based short linear peptides from
adopting regular â-turn structures, as these hydroxyl
groups themselves act as hydrogen bond acceptors.8
Similar secondary structures were also observed by us
in the reverse turn peptidomimetics based on C2-sym-
metric 2,5-dideoxy-2,5-anhydro-9 and 2,5-dideoxy-2,5-
imino-sugar diacids.10 Recent works of Overhand and co-
workers on the X-ray structure of furanoid sugar amino
acid containing gramicidin S analogue showed the exist-
ence of a similar intramolecularly hydrogen-bonded
reverse turn structure in which the ring hydroxyl acted
as an acceptor, providing further support to our earlier
findings.11 That the cis-3-hydroxy-D-proline-containing
Proline plays a critical determinant role in protein
folding and refolding, because it induces a reversal in
backbone conformation resulting in the nucleation of
turns as well as in the breaking of helices in proteins.1
Whereas L-proline as the second residue (i + 1) is known
to nucleate type I/II â-turns in peptides involving an
intramolecular hydrogen bond between the CdO of the
first (i) and NH of the fourth (i + 3) residue, its D-isomer
favors antiparallel â-sheet formation via type I′/II′ â-turns.2
It is well established that the type I′ and II′ â-turn
conformations adopted by D-Pro-Xxx segments, with a æ
value of ca. +60° for the pyrrolidine ring, promote
nucleation of â-hairpin structures in proteins, stronger
in the former.3 While induction of proline causes a
reversal in the backbone conformation in peptides,
polyproline-based peptides exhibit helical structures as
often seen, for example, in collagenous peptides4 that
have repeating units of Gly-X-Y composed predominantly
of proline (X) and hydroxyproline (Hyp, Y) residues. The
roles of 4-Hyp5 and 3-Hyp6 residues on the conforma-
tional stability of the collagen triple helix have been
extensively investigated. However, no information is
available on the effect of 3-Hyp residues on the structures
of short linear peptides. This prompted us to undertake
(4) (a) Vitagliano, L.; Berisio, R.; Mazzarella, L.; Zagari, A. Biopoly-
mers 2001, 58, 459. (b) Babu, I. R.; Ganesh, K. N. J . Am. Chem. Soc.
2001, 123, 2079. (c) Persikov, A. V.; Ramshaw, J . A.; Kirkpatrick, A.;
Brodsky, B. Biochemistry 2000, 39, 14960. (d) Nagarajan, V.; Kamitori,
S.; Okuyama, K. J . Biochem. 1999, 125, 310. (e) Holmgren, K. S.;
Taylor, M.; Bretscher, L. E.; Raines, R. T. Nature 1998, 392, 666. (f)
Prockop, D. J .; Kivirikko, K. Annu. Rev. Biochem. 1995, 64, 403. (g)
Ko, C. Y.; J ohnson, L. D.; Priest, R. E. Biochim. Biophys. Acta 1979,
581, 252. (h) Szymanowicz, A.; Malgras, A.; Randoux, A.; Borel, J . P.
Biochim. Biophys. Acta 1979, 576, 253. (i) Gryder, R. M.; Lamon, M.;
Adams, E. J . Biol. Chem. 1975, 250, 2470.
(5) (a) Improta, R.; Mele, F.; Crescenzi, O.; Benzi, C.; Barone, V. J .
Am. Chem. Soc. 2002, 124, 7857. (b) DeRider, M. L.; Wilkens, S. J .;
Waddell, M. J .; Bretscher, L. E.; Weinhold, F.; Raines, R. T.; Markley,
J . L. J . Am. Chem. Soc. 2002, 124, 2497. (c) Improta, R.; Benzi, C.;
Barone, V. J . Am. Chem. Soc. 2001, 123, 12568.
(1) (a) Sibanda, B. L.; Blundell, T. L.; Thornton, J . M. J . Mol. Biol.
1989, 206, 759. (b) Bell, J . E.; Bell, T. E. Proteins and Enzymes;
Prentice Hall: Englewood Cliffs, NJ , 1988. (c) Barlow, D. J .; Thornton,
J . M. J . Mol. Biol. 1988, 201, 601. (d) Rose, G. D.; Gierasch, L. M.;
Smith, J . A. Adv. Protein Chem. 1985, 37, 1.
(2) (a) Creighton, T. E. Proteins: Structures and Molecular Prin-
ciples; W. H. Freeman and Co.: New York, 1984. (b) Deber, C. M.;
Madison, V.; Blout, E. R. Acc. Chem. Res. 1976, 9, 106.
(3) (a) Fisk, J . D.; Gellman, S. H. J . Am. Chem. Soc. 2001, 123, 343.
(b) Fisk, J . D.; Powell, D. R.; Gellman, S. H. J . Am. Chem. Soc. 2000,
122, 5443. (c) Madalengoitia, J . S. J . Am. Chem. Soc. 2000, 122, 4986.
(d) Das, C.; Raghothama, S.; Balaram, P. J . Am. Chem. Soc. 1998, 120,
5812. (e) Stanger, H. E.; Gellman, S. H. J . Am. Chem. Soc. 1998, 120,
4236. (f) Raghothama, S. R.; Awasthi, S. K.; Balaram, P. J . Chem. Soc.,
Perkin Trans. 2 1998, 137. (g) Haque, T. S.; Little, J . C.; Gellman, S.
H. J . Am. Chem. Soc. 1996, 118, 6975.
(6) J enkins, C. L.; Bretscher, L. E.; Guzei, I. A.; Raines, R. T. J .
Am. Chem. Soc. 2003, 124, 6422.
(7) (a) Guruprasad, K.; Shukla, S. J . Peptide Res. 2003, 61, 159. (b)
Venkatraman, J .; Gowda, G. A. N.; Balaram, P. J . Am. Chem. Soc.
2002, 124, 4987. (c) Gibbs, A. C.; Bjorndahl, T. C.; Hodges, R. S.;
Wishart, D. S. J . Am. Chem. Soc. 2002, 124, 1203. (d) Venkatraman,
J .; Shankaramma, S. C.; Balaram, P. Chem. Rev. 2001, 101, 3131. (e)
Kaul, R.; Balaram, P. Bioorg. Med. Chem. 1999, 7, 105. (f) Gellman,
S. H. Curr. Opin. Chem. Biol. 1998, 2, 717. (g) Haque, T. S.; Little, J .
C.; Gellman, S. H. J . Am. Chem. Soc. 1996, 118, 6975.
(8) (a) Chakraborty, T. K.; J ayaprakash, S.; Srinivasu, P.; Madhav-
endra, S. S.; Sankar, A. R.; Kunwar, A. C. Tetrahedron 2002, 58, 2853.
(b) Chakraborty, T. K.; J ayaprakash, S.; Diwan, P. V.; Nagaraj, R.;
J ampani, S. R. B.; Kunwar, A. C. J . Am. Chem. Soc. 1998, 120, 12962.
10.1021/jo048893r CCC: $27.50 © 2004 American Chemical Society
Published on Web 09/11/2004
J . Org. Chem. 2004, 69, 7399-7402
7399