C
Z.-G. Feng et al.
Letter
Synlett
H
O
O
OH
C7H15
NaClO2, NaH2PO4
2-methyl-2-butene
C7H15
(C5H5)2ZrHCl
THF
14
t-BuOH
87%
63%
O
O
O
O
OBn
OBn
18
19
Scheme 5 Synthesis of acid 19
H17C8
C8H17MgBr
THF, 0 °C
OH
R
O
Supporting Information
C7H15
C7H15
Supporting information for this article is available online at
90%
S
u
p
p
o
nrtogI
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
O
O
O
O
OBn
OBn
20
References and Notes
(COCl)2, DMSO
Et3N, CH2Cl2
90%
(1) Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S. Chem.
Lett. 2000, 308.
(2) (a) Yuen, T.-Y.; Yang, S.-H.; Brimble, M. A. Angew. Chem. Int. Ed.
2011, 50, 8350. (b) Jay-Smith, M.; Furkert, D. P.; Sperry, J.;
Brimble, M. A. Synlett 2011, 1395.
H17C8
O
H17C8
O
Pd/C, H2
EtOH
C7H15
C7H15
89%
(3) Buehler, C. A.; Powers, T. A.; Michels, J. G. J. Am. Chem. Soc. 1944,
66, 417.
(4) Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1987,
52, 4410.
O
O
O
O
OH
OBn
5
21
Scheme 6 Synthesis of des-hydroxy paecilospirone (5)
(5) Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem.
1994, 59, 2668.
(6) Hoffmann, R. W.; Bovicelli, P. Synthesis 1990, 657.
(7) Spaggiari, A.; Vaccari, D.; Davoli, P.; Torre, G.; Prati, F. J. Org.
Chem. 2007, 72, 2216.
(8) Green, J. C.; Burnett, G. L.; Pettus, T. R. R. Pure Appl. Chem. 2012,
84, 1621.
(9) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.;
Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655.
(10) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37,
2091.
(11) Togo, H.; Muraki, T.; Hoshina, Y.; Yamaguchi, K.; Yokoyama, M.
J. Chem. Soc., Perkin Trans. 1 1997, 787.
(12) Togo, H.; Muraki, T.; Yokoyama, M. Tetrahedron Lett. 1995, 36,
7089.
Unable to facilitate the desired benzylic oxidation of the
either the amide 14 or then acid 19 in an acceptable yield
the aldehyde 18 was elaborated into des-hydroxy paecilo-
spirone (5) over three steps (Scheme 6). Nucleophilic addi-
tion of octyl magnesium bromide to the aldehyde 18 afford-
ed the alcohol 20 in 90% yield. This material was converted
into ketone 21 in 90% yield by a Swern oxidation. Hydroge-
nolysis of the benzylated phenol group furnished des-hy-
droxy paecilospirone (5) in 89% yield.15
In summary, a synthetic strategy resembling what we
believe to be the biosynthesis of paecilospirone has been
completed. Our approach utilizes an o-QM and an enol
ether synthesized from the same starting material and ar-
rives at des-hydroxy paecilospirone (5) in just ten steps. The
approach may be amenable to enantioselective control
through a chiral amide. Perhaps a method for the selective
oxidation of such complex systems, as compounds 14, 19,
and 5 with their numerous benzylic sites, will be discov-
ered that can emulate nature’s abilities which routinely sur-
pass our own.
(13) Davies, D. I.; Waring, C. J. Chem. Soc. C 1968, 2337.
(14) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(15) Compound 5: 1H NMR (500 MHz, CDCl3) δ = 7.30–7.24 (m, 2 H),
7.16 (t, J = 7.9 Hz, 1 H), 6.95–6.90 (m, 2 H), 6.80 (d, J = 7.9 Hz, 1
H), 5.30 (s, 1 H), 5.25 (d, J = 12.8 Hz, 1 H), 5.07 (d, J = 12.8 Hz, 1
H), 3.30 (dd, J = 17.6, 5.5 Hz, 1 H), 3.01–2.84 (m, 3 H), 2.36–2.25
(m, 1 H), 1.77–1.67 (m, 2 H), 1.46–1.07 (m, 22 H), 0.87 (t, J = 7.0
Hz, 3 H), 0.83 (t, J = 7.1 Hz, 3 H). 13C NMR (126 MHz, CDCl3) δ =
204.8, 153.5, 150.0, 141.0, 138.2, 129.8, 126.9, 126.7, 122.4,
121.4, 120.6, 115.7, 114.5, 111.6, 70.6, 41.9, 38.2, 31.8, 31.8,
30.6, 29.6, 29.4, 29.4, 29.2, 29.1, 26.8, 26.1, 24.6, 22.7, 22.6, 14.1,
14.1. IR νmax (neat): 3393, 2925, 2854, 1670, 1607, 1455, 1287,
1258, 927. HRMS (ESI+) calcd for
515.3137; found: 515.3126
C
32H44O4Na [M+Na]+:
Funding Information
T.R.R.P. is grateful for past financial support from the National Science
Foundation (CHE-0806356) for this work.
N
oaitn
a
l
Secince
F
o
u
n
d
oaitn
C(
H
E-0
8
0
6
3
5
6)
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–C