Scheme 1 Reagents and conditions: (i) 10 equiv. benzyl bromide, CH3CN, N2, RT, 8 d; (ii) 50 equiv. NaBH4, EtOH, N2, RT, 14 d, neutral alumina
chromatography; (iii) H2, 10% Pd/C, HOAc, RT, 3 d; (iv) 1 equiv. benzaldehyde, CH3OH, N2, RT, o/n; (v) 2 equiv. tert-butylbromoacetate, K2CO3,
CH3CN, N2, RT, 3 d, neutral alumina chromatography; (vi) 6 M HCl, 100 uC, 2 d; (vii) 1.1 equiv. Cl2CS, CHCl3/H2O, pH 8, RT, o/n.
spectroscopy arising from the relative positions of the ethylene bridge and
4-substituted phenyl group in the free ligand.
** An ethylenediamine spacer has been introduced in the biotin-conjugate
of 10 to minimise interference from the chelator on binding to avidin/
streptavidin; longer spacers can also be introduced.
1 (a) S. Lui and D. S. Edwards, Bioconjugate Chem., 2001, 12, 7; (b) The
Chemistry of Contrast Agents in Medicinal Magnetic Resonance Imaging,
´
ed. E. To´th and A. E. Merbach, Wiley, Chichester 2001.
2 (a) C. F. Meares, A. J. Chumura, M. S. Orton, T. M. Corneillie and
P. A. Whetstone, J. Mol. Recognit., 2003, 16, 255; (b) C. J. Anderson,
M. A. Green and Y. Fujibayashi in Handbook of Radiopharmaceuticals,
ed. M. J. Welch and C. S. Redvanly, Wiley, New York 2003, pp. 401–422.
´
3 Specific examples include: (a) R. Ruloff, E. To´th, R. Scopelliti,
R. Tripier, H. Handel and A. E. Merbach, Chem. Commun., 2002, 2630;
(b) C. J. Mathias, M. J. Welch, M. A. Green, H. Diril, C. F. Meares,
R. J. Gropler and S. R. Gergmann, J. Nucl. Med., 1991, 32, 475;
(c) G. L. DeNardo, D. L. Kukis, S. Shen, D. A. DeNardo, C. F. Meares
and S. J. DeNardo, Clin. Cancer Res., 1999, 5, 533.
Fig. 1 Biotin conjugate synthesis inset ESMS2 of (a) 10, m/z 510 (25, M 1
Na 2 2)2, 488 (100, M 2 1)2; (b) 11, m/z 796 (60, M 1 Na 2 2)2, 774 (100,
M 2 1)2 (for full MS see ESI).
4 L. A. Bass, M. Wang, M. J. Welch and C. J. Anderson, Bioconjugate
Chem., 2000, 11, 527.
5 G. R. Mirick, R. T. O’Donnell, S. J. DeNardo, S. Shen, C. F. Meares
and G. L. DeNardo, Nucl. Med. Biol., 1999, 26, 841.
bind Cu(II) ions has been demonstrated and the biologically
relevant biotin-conjugate formed.
We acknowledge the Wellcome Trust (E. A. L., grant
no. 069719) for funding. We also thank Dr Trevor Dransfield
(University of York) and the EPSRC National Service (Swansea)
for electrospray mass spectrometry.
6 E. H. Wong, G. R. Weisman, D. C. Hill, D. P. Reed, M. E. Rogers,
J. S. Condon, M. A. Fagan, J. C. Calabrese, K.-C. Lam, I. A. Guzei and
A. L. Rheingold, J. Am. Chem. Soc., 2000, 122, 10561.
7 (a) X. Sun, M. Wuest, G. R. Weisman, E. H. Wong, D. P. Reed,
C. A. Boswell, R. Motekaitis, A. E. Martell, M. J. Welch and
C. J. Anderson, J. Med. Chem., 2002, 45, 469; (b) C. A. Boswell, X. Sun,
W. Nui, G. R. Weisman, E. H. Wong, A. L. Rheingold and
C. J. Anderson, J. Med. Chem., 2004, 47, 1465.
Notes and references
{ Electronic supplementary information (ESI) available: Further experi-
mental details and characterisation for compounds 9–11 and Cu(9); See
{ On binding to metal ions all four nitrogen lone pairs of the cross-bridged
ligand converge upon a cleft that encapsulates the cation with an enforced
cis-V6 ligand conformation; this conformational fixing leads to the
remarkable kinetic stability.10b
8 The biological applications of cross-bridged macrocycles have been
recognised in a number of patents including: (a) T. J. Hubin and
T. J. Meade, Novel Macrocyclic Magnetic Resonance Imaging Contrast
Agents, PCT Int. Appl., WO 02/06287 A2, 2002; (b) C. M. Perkins and
D. T. Reed, Metal Complexes for Use in Medical and Therapeutic
Applications, PCT Int. Appl., WO 02/26748 02, 2000.
9 E. A. Lewis, C. C. Allan, R. W. Boyle and S. J. Archibald, Tetrahedron
Lett., 2004, 45, 3059.
10 For example: (a) T. J. Hubin, J. M. McCormick, S. R. Collinson,
N. W. Alcock and D. H. Busch, J. Chem. Soc., Chem. Commun., 1998,
1675; (b) T. J. Hubin, Coord. Chem. Rev., 2003, 247, 27.
§ The high reactivity of the isothiocyanate functionality toward free amine
sites of biomolecules is well established making 10 the BFC of choice.12
} Highly regioselective bisquaternisation is
a result of macrocycle
conformation;6 two diastereoisomers are formed in 1:1 ratio as previously
described.9
11 E. A. Bayer and M. Wilchek in Immunoassay, ed. E. P. Diamandis and
T. K. Christopoulus, Academic Press, San Diego, CA, 1996, pp. 237–267.
12 G. T. Hermanson, Bioconjugate Techniques, Academic Press, London,
1996, p. 303.
, Ring inversion, whereby the ethylene bridge passes through the plane of
the 14-membered ring, is slow on the NMR timescale and so there are two
possible conformational isomers in solution observed by 1H and 13C NMR
C h e m . C o m m u n . , 2 0 0 4 , 2 2 1 2 – 2 2 1 3
2 2 1 3