10.1002/anie.202108791
Angewandte Chemie International Edition
RESEARCH ARTICLE
M. Bouzelha, M. Mével, D. Deniaud, M. Boujtita, S. G. Gouin, J. Am.
Chem. Soc, 2018, 140, 17120–17126; d) S. Leier, S. Richter, R.
Bergmann, M. Wuest, F. Wuest, ACS Omega 2019, 4, 22101–22107.
[10] P. R. Lindstedt, F. A. Aprile, M. J. Matos, M. Perni, J. B. Bertoldo, B.
Bernardim, Q. Peter, G. Jiménez-Osés, T. P. J. Knowles, C. M. Dobson,
F. Corzana, M. Vendruscolo, G. J. L. Bernardes, ACS Cent. Sci. 2019, 5,
1417–1424.
where a second nucleophilic attack leads to the formation of a
cyclic linkage, but this pathway can be controlled and depleted if
undesired conjugate mixtures are obtained. The approach allows
for the creation of conjugates with azide/alkyne moieties and
opens up possibilities to create tailored conjugation for a number
of relevant proteins, including nanobodies or IgGs relevant for the
formation of ADCs.
[11] B. Bernardim, P. M. Cal, M. J. Matos, B. L. Oliveira, N. Martínez-Sáez, I.
S. Albuquerque, E. Perkins, F. Corzana, A. C. Burtoloso, G. Jiménez-
Osés, G. J. Bernardes, Nat. Commun. 2016, 7, 13128.
[12] S. Sechi, B. T. Chait, Anal. Chem. 1998, 70, 5150–5158.
[13] C. Zhang, E. V. Vinogradova, A. M. Spokoyny, S. L. Buchwald, B. L.
Pentelute, Angew. Chem. Int. Ed. 2019, 58, 4810–4839.
Acknowledgements
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement Nº 836698. We also
thank Dr. Ester Jiménez-Moreno for providing Ub, Dr. André
Neves and Prof. Kevin Brindle for supplying C2Am, Dr. Phil
Lindstedt and Prof. Michele Vendruscolo for the HET nanobody,
HSA was provided by Albumedix, and AstraZeneca for producing
and supplying the Gemtuzumab, Trastuzumab and Fc domain
antibodies. The authors thank Dr Vikki Cantrill for her help with
the editing of this manuscript. Funding from the Scripps Research
Institute is also acknowledged (A.A.), FCT Portugal (PhD
scholarship PD/BD/135512/2018 to C.F.A.) and Agencia Estatal
Investigación of Spain (AEI; Grant RTI2018-099592-B-C21 to
F.C.). G.J.L.B. is a Royal Society University Research Fellow
(URF\R\180019) and an FCT Stimulus (CEECIND/00453/2018).
[14] J. Ravasco, H. Faustino, A. Trindade, P. M. P. Gois, Chem. Eur. J. 2019,
25, 43–59.
[15] P. D. Senter, E. L. Sievers, Nat. Biotechnol. 2012, 30, 631–637.
[16] P. M. LoRusso, D. Weiss, E. Guardino, S. Girish, M. X. Sliwkowski, Clin.
Cancer Res. 2011, 17, 6437–6447.
[17] N. Goel, S. Stephens, MAbs 2010, 2, 137–147.
[18] A. Beck, L. Goetsch, C. Dumontet, N. Corvaïa, Nat. Rev. Drug Discov.
2017, 16, 315–337.
[19] A. D. Baldwin, K. L. Kiick, Bioconjugate Chem. 2011, 22, 1946–1953.
[20] P. A. Szijj, C. Bahou, V. Chudasama, Drug Discov. Today Technol. 2018,
30, 27–34.
[21] a) B. Q. Shen, K. Xu, L. Liu, H. Raab, S. Bhakta, M. Kenrick, K. L.
Parsons-Reponte, J. Tien, S. F. Yu, E. Mai, D. Li, J. Tibbitts, J. Baudys,
O. M. Saad, S. J. Scales, P. J. McDonald, P. E. Hass, C. Eigenbrot, T.
Nguyen, W. A. Solis, R. N. Fuji, K. M. Flagella, D. Patel, S. D. Spencer,
L. A. Khawli, A. Ebens, W. L. Wong, R. Vandlen, S. Kaur, M. X.
Sliwkowski, R. H. Scheller, P. Polakis, J. R. Junutula, Nat. Biotechnol.
2012, 30, 184–189; b) L. N. Tumey, M. Charati, T. He, E. Sousa, D. Ma,
X. Han, T. Clark, J. Casavant, F. Loganzo, F. Barletta, J. Lucas, E. I.
Graziani, Bioconjugate Chem. 2014, 25, 1871–1880.
Keywords: bioconjugation • cysteine • irreversible • maleimides
[22] a) R. J. Christie, R. Fleming, B. Bezabeh, R. Woods, S. Mao, J. Harper,
A. Joseph, Q. Wang, Z. Q. Xu, H. Wu, C. Gao, N. Dimasi, J. Control.
Release 2015, 220, 660–670; b) S. D. Fontaine, R. Reid, L. Robinson,
G. W. Ashley, D. V. Santi, Bioconjugate Chem. 2015, 26, 145–152.
[23] W. Huang, X. Wu, X. Gao, Y. Yu, H. Lei, Z. Zhu, Y. Shi, Y. Chen, M. Qin,
W. Wang, Y. Cao, Nat. Chem. 2019, 11, 310–319.
• Michael addition
[1]
a) E. A. Hoyt, P. M. S. D. Cal, B. L. Oliveira, G. J. L. Bernardes, Nat. Rev.
Chem. 2019, 3, 147–171; b) J. N. deGruyter, L. R. Malins, P. S. Baran,
Biochemistry 2017, 56, 3863–3873; c) J. A. Shadish, C. A. DeForest,
Matter 2020, 2, 50–77; d) L. Xu, S. L. Kuan, T. Weil, Angew. Chem. Int.
Ed. 2021,133, 13874–13894.
[24] a) M. E. Smith, F. F. Schumacher, C. P. Ryan, L. M. Tedaldi, D.
Papaioannou, G. Waksman, S. Caddick, J. R. Baker, J. Am. Chem. Soc.
2010, 132, 1960–1965; b) C. Marculescu, H. Kossen, R. E. Morgan, P.
Mayer, S. A. Fletcher, B. Tolner, K. A. Chester, L. H. Jones, J. R. Baker,
Chem. Commun. 2014, 50, 7139–7142; c) N. Forte, M. Livanos, E.
Miranda, M. Morais, X. Yang, V. S. Rajkumar, K. A. Chester, V.
Chudasama, J. R. Baker, Bioconjugate Chem. 2018, 29, 486–492; d) J.
P. M. Nunes, V. Vassileva, E. Robinson, M. Morais, M. E. B. Smith, R. B.
Pedley, S. Caddick, J. R. Baker, V. Chudasama, RSC Adv. 2017, 7,
24828–24832; e) E. De Geyter, E. Antonatou, D. Kalaitzakis, S. Smolen,
A. Iyer, L. Tack, E. Ongenae, G. Vassilikogiannakis, A. Madder, Chem.
Sci. 2021, 12, 5246–5252.
[2]
a) E. M. Milczek, Chem. Rev. 2018, 118, 119–141; b) N. Krall, F. P. da
Cruz, O. Boutureira, G. J. L. Bernardes, Nat. Chem. 2016, 8, 103–113;
c) V. Chudasama, A. Maruani, S. Caddick, Nat. Chem. 2016, 8, 114–119.
J. M. Chalker, G. J. L. Bernardes, Y. A. Lin, B. G. Davis, Chem. Asian J.
2009, 4, 630–640.
[3]
[4]
a) S. Asano, J. T. Patterson, T. Gaj, C. F. Barbas, 3rd, Angew. Chem.
Int. Ed. 2014, 53, 11783–11786; b) M. J. Matos, B. L. Oliveira, N.
Martínez-Sáez, A. Guerreiro, P. M. S. D. Cal, J. Bertoldo, M. Maneiro, E.
Perkins, J. Howard, M. J. Deery, J. M. Chalker, F. Corzana, G. Jiménez-
Osés, G. J. L. Bernardes, J. Am. Chem. Soc, 2018, 140, 4004–4017; c)
S. R. Adusumalli, D. G. Rawale, U. Singh, P. Tripathi, R. Paul, N. Kalra,
R. K. Mishra, S. Shukla, V. Rai, J. Am. Chem. Soc. 2018, 140, 15114–
15123.
[25] B. Bernardim, M. J. Matos, X. Ferhati, I. Compañón, A. Guerreiro, P.
Akkapeddi, A. C. B. Burtoloso, G. Jiménez-Osés, F. Corzana, G. J. L.
Bernardes, Nat. Protoc. 2019, 14, 86–99.
[5]
[6]
[7]
N. Ma, J. Hu, Z. M. Zhang, W. Liu, M. Huang, Y. Fan, X. Yin, J. Wang, K.
Ding, W. Ye, Z. Li, J. Am. Chem. Soc, 2020, 142, 6051–6059.
Y. Seki, T. Ishiyama, D. Sasaki, J. Abe, Y. Sohma, K. Oisaki, M. Kanai,
J. Am. Chem. Soc, 2016, 138, 10798–10801.
[26] a) B. W. Zaro, L. R. Whitby, K. M. Lum, B. F. Cravatt, J. Am. Chem. Soc.
2016, 138, 15841–15844; b) B. W. Zaro, E. V. Vinogradova, D. C. Lazar,
M. M. Blewett, R. M. Suciu, J. Takaya, S. Studer, J. C. de la Torre, J. L.
Casanova, B. F. Cravatt, J. R. Teijaro, J. Immunol. 2019, 202, 2737–
2746; c) M. M. Blewett, J. Xie, B. W. Zaro, K. M. Backus, A. Altman, J. R.
Teijaro, B. F. Cravatt, Sci. Signal. 2016, 9, rs10.
a) S. Lin, X. Yang, S. Jia, A. M. Weeks, M. Hornsby, P. S. Lee, R. V.
Nichiporuk, A. T. Iavarone, J. A. Wells, F. D. Toste, C. J. Chang, Science
2017, 355, 597–602; b) M. T. Taylor, J. E. Nelson, M. G. Suero, M. J.
Gaunt, Nature 2018, 562, 563–568.
[27] M. B. Richardson, K. N. Gabriel, J. A. Garcia, S. N. Ashby, R. P. Dyer, J.
K. Kim, C. J. Lau, J. Hong, R. J. Le Tourneau, S. Sen, D. L. Narel, B. B.
Katz, J. W. Ziller, S. Majumdar, P. G. Collins, G. A. Weiss, Bioconjugate
Chem. 2020, 31, 1449–1462.
[8]
[9]
J. C. Vantourout, S. R. Adusumalli, K. W. Knouse, D. T. Flood, A.
Ramirez, N. M. Padial, A. Istrate, K. Maziarz, J. N. deGruyter, R. R.
Merchant, J. X. Qiao, M. A. Schmidt, M. J. Deery, M. D. Eastgate, P. E.
Dawson, G. J. L. Bernardes, P. S. Baran, J. Am. Chem. Soc, 2020, 142,
17236–17242.
[28] G. Bonse, H. U. Blank, Liebigs Ann. Chem. 1981, 1981, 1658–1664.
[29] P. R. Lindstedt, F. A. Aprile, P. Sormanni, R. Rakoto, C. M. Dobson, G.
J. L. Bernardes, M. Vendruscolo, Cell Chem. Biol. 2021, 28, 70–77 e75.
[30] I. S. Alam, A. A. Neves, T. H. Witney, J. Boren, K. M. Brindle,
Bioconjugate Chem. 2010, 21, 884–891.
a) K. L. Seim, A. C. Obermeyer, M. B. Francis, J. Am. Chem. Soc, 2011,
133, 16970–16976; b) S. Sato, H. Nakamura, Angew. Chem. Int. Ed.
2013, 52, 8681–8684; c) D. Alvarez-Dorta, C. Thobie-Gautier, M. Croyal,
5
This article is protected by copyright. All rights reserved.