Journal of the American Chemical Society
Article
Table 2. Competition Assay of the Geldanamycin−FITC Conjugate (10 nM) Bound to Hsp90α (50 nM) with Geldanamycin
a
Derivatives 5b and 8−12
geldanamycin derivative
GM-FICT
2.3 0.1
5b
8
9
10
11
19
12
24
fluorescence polarization (nM)
8
6
42
7
95
8
256 84
4
3
a
The IC50 values obtained from dose-response fitting curves as a function of the competitor concentration are given in the table.18.
To verify these unexpected in vivo results, we decided to
ASSOCIATED CONTENT
■
conduct an in vitro competition assay which utilizes
recombinant, purified full length human heatshock protein
Hsp90α. The assay relies on the competition of fluorescently
(fluorescein isothiocyanate (FITC)) labeled geldanamycin
bound to Hsp90α with new geldanamycin derivatives. The
geldanamycin−FITC conjugate was first incubated at different
concentrations with Hsp90α (Figure 5). Half saturation of
binding was achieved at 2.3 nM, as judged from the
fluorescence polarization signal for bound geldanamycin−
FITC. This value compares favorably to the sensitivity observed
by Kim et al. for a similar geldanamycin conjugate (6.6 nM).
This group had developed such an assay for high-throughput
screening in search of novel Hsp90 inhibitors.23
The dose−response activities of geldanamycin derivatives 5b
and 8−12 were tested in the presence of Hsp90α loaded with
the geldanamycin−FITC conjugate (Table 2).18 The data
favorably compare with the in vivo data collected and listed in
Table 1, with geldanamycin derivative 10 being the least active
new metabolite, and indicate that this binding/competition
assay well complements our in vivo results.
S
* Supporting Information
Details on the synthesis of benzoic acids and copies of 1H-, 13
C
NMR and MS spectra of mutaproducts as well as details on the
assay and modeling studies. This material is available free of
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
We thank the U.S. National Institutes of Health (Grant CA
76461) and the Deutsche Forschungsgemeinschaft (Grant Ki
397 / 13-1) and the Fonds der Chemischen Industrie. We
thank Kosan Biosciences Incorporated for providing us with
strain S. hygroscopicus (K390-61-1) and Wera Collisi (HZI)
for performing the cell proliferation assays. We are grateful to
David Agard (UCSF, USA) for a human HSP90α clone. We are
grateful to Gerald Drager for expert support in mass
̈
spectrometry analyses. We thank the reviewers for helpful
suggestions.
In contrast to the cases of the geldanamycin derivatives, the
ring enlarged 20-membered lactones 13−15 and 19, 21, and 23
did not show antiproliferative activity or Hsp90 binding affinity.
REFERENCES
■
CONCLUSIONS
(1) (a) Workman, P. Curr. Cancer Drug Targets 2003, 3, 297−300.
(b) Neckers, L.; Neckers, K. Expert Opin. Emerging Drugs 2005, 10,
137−149. (c) Whitesell, L.; Lindquist, S. L. Nat. Rev. Cancer 2005, 5,
761−772. (d) Prodromou, C.; Roe, S. M.; O’Brien, R.; Ladbury, J. E.;
Piper, P. W.; Pearl, L. H. Cell 1997, 90, 65−75.
■
In summary, mutasynthetic feeding studies with the AHBA-(−)
mutant of the geldanamycin producer S. hygroscopicus using 3-
amino-5-hydroxymethylbenzoic acid 7 provided five new
geldanamycin derivatives differing in the degree of post-PKS
modification. This mutasynthetic experiment allowed us to
propose the sequence of post-PKS transformations by the
tailoring enzymes in geldanamcin biosynthesis. The second set
of mutaproducts, three 20-membered macrolactones, revealed
an unexpected and unprecedented chemoselectivity of the
amide synthase responsible for macrocyclization, which is not
shown by the corresponding amide synthase operating in
ansamitocin biosynthesis.15,16 This substrate flexibility with
respect to the aryl moiety of the bound nucleophile could be
extended using other m-hydroxymethylbenzoic acid starter
units. Finally, new geldanamycin derivatives 8, 11, and 12 show
good to moderate antiproliferative activities on different cell
lines while partially post-PKS processed mutaproducts 9 and 10
have lost most of this biological property. The active
mutaproducts, as the parent natural product geldanamycin 4,
act on Hsp90.
(2) Review: Biamonte, M. A.; van de Water, R.; Arndt, J. W.;
Scannevin, R. H.; Perret, D.; Lee, W.-C. J. Med. Chem. 2010, 53, 3−17.
(3) Blagosklonny, M. V.; Toretsky, J.; Neckers, L. Oncogene 1995, 11,
933−939.
(4) Janin, L. J. Med. Chem. 2005, 48, 7503−7512.
(5) (a) Stead, P.; Latif, S.; Blackaby, A. P.; Sidebottom, P. J.; Deakin,
A.; Taylor, N. L.; Life, P.; Spaull, J.; Burrell, F.; Jones, R.; Lewis, J.;
Davidson, I.; Mander, T. J. Antibiot. 2000, 53, 657−663. (b) Takatsu,
T.; Ohtsuki, M.; Muramatsu, A.; Enokita, R.; Kurakata, S. I. J. Antibiot.
2000, 53, 1310−1312.
(6) (a) Kim, C.-G.; Yu, T. W.; Fryhle, C. B.; Handa, S.; Floss, H. G. J.
Biol. Chem. 1998, 273, 6030−6040. (b) Arakawa, K.; Muller, R.;
̈
Mahmud, T.; Yu, T.-W.; Floss, H. G. J. Am. Chem. Soc. 2002, 124,
10644−10645.
(7) (a) Rascher, A.; Hu, Z.; Viswanathan, N.; Schirmer, A.; Reid, R.;
Nierman, W. C.; Lewis, M.; Hutchinson, C. R. FEMS Microbiol. Lett.
2003, 218, 223−230. (b) Hong, Y.-S.; Lee, D.; Kim, W.; Jeong, J. K.;
Kim, C. G.; Sohng, J. K.; Lee, J. H.; Paik, S. G.; Lee, J. J. J. Am. Chem.
Soc. 2004, 126, 11142−11143. (c) Lee, D.; Lee, K.; Cai, X. F.; Dat, N.
T.; Boovanahalli, S. K.; Lee, M.; Shin, J. C.; Kim, W.; Jeong, J. K.; Lee,
J. S.; Lee, C. H.; Lee, J. H.; Hong, Y.-S.; Lee, J. J. ChemBioChem 2006,
7, 246−248.
To the best of our knowledge we describe here the first
mutasynthetic experiment that yields macrocyclic metabolites
with an altered type of ring closure and ring size.24 These
results pave the way to utilize the amide synthase of S.
hygroscopicus, after overexpression and mutagenetic optimiza-
tion, as a macrocylization tool of chemically broader substrate
flexibility.
(8) Eichner, S.; Floss, H. G.; Sasse, F.; Kirschning, A. ChemBioChem
2009, 10, 1801−1805.
(9) (a) Kim, W.; Lee, J. S.; Lee, D.; Cai, X. F.; Shin, J. C.; Lee, K.;
Lee, C.-H.; Ryu, S.; Paik, S.-G.; Lee, J. J.; Hong, Y.-S. ChemBioChem
2007, 8, 1491−1494. (b) Kim, W.; Lee, D.; Hong, S. S.; Na, Z.; Shin, J.
1678
dx.doi.org/10.1021/ja2087147 | J. Am. Chem.Soc. 2012, 134, 1673−1679