Communication
ChemComm
Notes and references
1 (a) M. Kamigaito, T. Ando and M. Sawamoto, Chem. Rev., 2001,
101, 3689; (b) G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem.,
2009, 62, 1402; (c) J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes
and B. Charleux, Prog. Polym. Sci., 2013, 38, 63; (d) S. Perrier and
P. Takolpuckdee, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5347.
2 (a) D. Benoit, V. Chaplinski, R. Braslau and C. J. Hawker, J. Am.
Chem. Soc., 1999, 121, 3904; (b) D. Benoit, S. Grimaldi, S. Robin, J.-P.
Finet, P. Tordo and Y. Gnanou, J. Am. Chem. Soc., 2000, 122, 5929.
3 C. Dire, J. Belleney, J. Nicolas, D. Bertin, S. Magnet and B. Charleux,
J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 6333.
4 (a) B. Charleux, J. Nicolas and O. Guerret, Macromolecules, 2005,
38, 5485; (b) J. Nicolas, C. Dire, L. Mueller, J. Belleney, B. Charleux,
S. R. A. Marque, D. Bertin, S. Magnet and L. Couvreur, Macromole-
cules, 2006, 39, 8274.
5 (a) J. Nicolas, S. Brusseau and B. Charleux, J. Polym. Sci., Part A:
Polym. Chem., 2010, 48, 34; (b) M. Chenal, S. Mura, C. Marchal,
D. Gigmes, B. Charleux, E. Fattal, P. Couvreur and J. Nicolas,
Macromolecules, 2010, 43, 9291.
Fig. 3 Cell viability (MTT assay) after incubation of NIH/3T3 cells and
J774.A1 cells with P(MeOEGMA-co-MPDL) copolymer (expt. 3, FMPDL,0
=
0.113) at 0.1 and 1 mg mLÀ1. Results were expressed as percentages of
absorption of treated cells (ÆSD) in comparison to that of untreated ones
as a control.
´
6 (a) B. Lessard, E. J. Y. Ling, M. S. T. Morin and M. Maric, J. Polym. Sci.,
Part A: Polym. Chem., 2011, 49, 1033; (b) B. H. Lessard, E. J. Y. Ling
´
and M. Maric, Macromolecules, 2012, 45, 1879; (c) B. H. Lessard,
Y. Guillaneuf, M. Mathew, K. Liang, J.-L. Clement, D. Gigmes,
copolymer and from the products, which is a very encouraging
indication of their biocompatibility and their safe use as
biomaterial building blocks.
´
R. A. Hutchinson and M. Maric, Macromolecules, 2013, 46, 805.
7 (a) V. Delplace, P. Couvreur and J. Nicolas, Polym. Chem., 2014, 5, 1529;
(b) M. Elsabahy and K. L. Wooley, Chem. Soc. Rev., 2012, 41, 2545.
8 S. Agarwal, Polym. Chem., 2010, 1, 953.
In conclusion, we have demonstrated that MPDL, a little-
studied CKA, can both act as a controlling comonomer for the
SG1-mediated polymerization of methacrylic esters and confer
tunable degradability to the resulting copolymer. By adjusting
the comonomer feed, up to complete degradation was observed. No
significant toxicity was shown, either from P(MeOEGMA-co-MPDL)
or from its degradation products. Not only does this broaden
the range of suitable controlling comonomers for the NMP of
methacrylic esters, but it adds significant value to the copolymeri-
zation approach due to the degradability of the resulting
copolymer. Additionally, this study opens up exciting perspec-
tives in the design of new controlling comonomers and NMP-
derived degradable architectures with a wide range of potential
(bio)applications. For instance, nanoparticles or therapeutic
proteins decorated with degradable PEG segments should
show reduced toxicity and persistence compared to their non-
degradable PEGylated analogues.
The manuscript was written through contributions of all
authors. The authors thank the French National Research Agency
(ANR-11-JS08-0005) for the financial support of the PhD thesis of
VD and the French Ministry of Research for the financial support of
the PhD thesis of EG. Arkema is warmly acknowledged for kindly
providing the BlocBuilder MA alkoxyamine and the SG1 nitroxide.
CNRS is also acknowledged for financial support.
9 (a) V. Delplace, A. Tardy, S. Harrisson, S. Mura, D. Gigmes,
Y. Guillaneuf and J. Nicolas, Biomacromolecules, 2013, 14, 2837;
(b) J.-F. Lutz, J. Andrieu, S. Uzgu¨n, C. Rudolph and S. Agarwal,
¨
Macromolecules, 2007, 40, 8540; (c) J. Undin, A. Finne-Wistrand and
A.-C. Albertsson, Biomacromolecules, 2013, 14, 2095; (d) J. Undin,
T. Illanes, A. Finne-Wistrand and A.-C. Albertsson, Polym. Chem.,
2012, 3, 1260; (e) S. Maji, M. Zheng and S. Agarwal, Macromol. Chem.
Phys., 2011, 212, 2573; ( f ) Y. Zhang, D. Chu, M. Zheng, T. Kissel and
S. Agarwal, Polym. Chem., 2012, 3, 2752; (g) C. Riachi, N. Schu¨wer
and H.-A. Klok, Macromolecules, 2009, 42, 8076; (h) I. S. Chung and
K. Matyjaszewski, Macromolecules, 2003, 36, 2995; (i) D. J. Siegwart,
S. A. Bencherif, A. Srinivasan, J. O. Hollinger and K. Matyjaszewski,
J. Biomed. Mater. Res., Part A, 2008, 87, 345; ( j) Y. Zhang, A. Aigner
and S. Agarwal, Macromol. Biosci., 2013, 13, 1267.
10 W. J. Bailey, S. R. Wu and Z. Ni, Makromol. Chem., 1982, 183, 1913.
11 (a) B. Le Droumaguet and J. Nicolas, Polym. Chem., 2010, 1, 563;
(b) J.-F. Lutz, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 3459;
(c) J. Nicolas, G. Mantovani and D. M. Haddleton, Macromol. Rapid
Commun., 2007, 28, 1083.
12 W. J. Bailey, Z. Ni and S. R. Wu, J. Polym. Sci., Polym. Chem. Ed., 1982,
20, 3021.
13 W. J. Bailey, Z. Ni and S. R. Wu, Macromolecules, 1982, 15, 711.
14 V. Delplace, S. Harrisson, A. Tardy, D. Gigmes, Y. Guillaneuf and
J. Nicolas, Macromol. Rapid Commun., 2014, 35, 484.
15 M. Van Den Brink, A. M. Van Herk and A. L. German, J. Polym. Sci.,
Part A: Polym. Chem., 1999, 37, 3793.
16 G. E. Roberts, M. L. Coote, J. P. A. Heuts, L. M. Morris and
T. P. Davis, Macromolecules, 1999, 32, 1332.
17 T. Takahashi, J. Polym. Sci., Part A: Polym. Chem., 1970, 8, 739.
18 S. Harrisson, T. P. Davis, R. A. Evans and E. Rizzardo, Macromolecules,
2001, 34, 3869.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015