syntheses of the ABCD subunit,5g,6f and several other
synthetic studies have been reported.5-7
Scheme 1. Retrosynthetic Analysis
At the onset of our studies, we were interested in a plan
that would be compatible with the different functional groups
contained in the ABCD subunit, not the least of which was
the potentially sensitive homoallylic acetal that comprises
the trioxadispiroketal residue. In this vein, we envisaged a
strategy in which a hydroxy-iodo-THP such as 3 could serve
as a precursor to spiroketal 4 through the intermediacy of
an exocyclic enol ether. Since highly functionalized variants
of iodo cyclic ether 3 could be obtained from the iodoetheri-
fication of dihydroxyalkenes such as 2,8 which may be
assembled in a convergent fashion, such an approach would
be especially appropriate for complex spiroketal frame-
works.9,10 In essence the alkene moiety in 2 is regioselectively
elaborated to an acetal, a transformation that is synthetically
similar to the metal-mediated elaboration of an alkyne.11
A
possible application of this plan to the ABCD azaspiracid-1
subunit 5 calls for a hydroxy-hemiacetal-alkene precursor
6 and provided an opportunity for examination of this spiro-
ketalization strategy in a complex setting.12 The C10-C11
(azaspiracid numbering) alkene in 6 provides a practical point
for retrosynthetic dissection into olefination partners 7 and
8 (Scheme 1). The likelihood that alkene geometry is incon-
sequential to the synthetic outcome means that a stereose-
lective alkene synthesis would not be necessary.
Sulfone 7 was obtained from the known aldehyde 9
(Scheme 2)13 via a reaction sequence involving standard
(4) Evans, D. A.; Kvœrnø, L.; Mulder, J. A.; Raymer, B.; Dunn, T. B.;
Beauchemin, A.; Olhava, E. J.; Juhl, M.; Kagechika, K. Angew. Chem.,
Int. Ed. 2007, 46, 4693-4697. Evans, D. A.; Dunn, T. B.; Kvœrnø, L.;
Beauchemin, A.; Raymer, B.; Olhava, E. J.; Mulder, J. A.; Juhl, M.;
Kagechika, K.; Favor, D. A. Angew. Chem. 2007, 119, 4782-4787; Angew.
Chem., Int. Ed. 2007, 46, 4698-4703.
Scheme 2. Synthesis of Sulfone 7
(5) (a) Carter, R. G.; Weldon, D. J. Org. Lett. 2000, 2, 3913-3916. (b)
Carter, R. G.; Graves, D. E. Tetrahedron Lett. 2001, 42, 6035-6039. (c)
Carter, R. G.; Bourland, T. C.; Graves, D. E. Org. Lett. 2002, 4, 2177-
2179. (d) Carter, R. G.; Graves, D. E.; Gronemeyer, M. A.; Bourland, T.
C.; Zhou, X.-T.; Gronemeyer, M. A. Tetrahedron 2003, 59, 8963-8974.
(e) Carter, R. G. Chem. Commun. 2004, 2138, 2140. (f) Zhou, X.-T.; Carter,
R. G. Angew. Chem., Int. Ed. 2006, 45, 1787-1790.
(6) (a) Dounay, A. B.; Forsyth, C. J. Org. Lett. 2001, 3, 975-978. (b)
Aiguade, J.; Hao, J.; Forsyth, C. J. Org. Lett. 2001, 3, 979-982. (c) Aiguade,
J.; Hao, J.; Forsyth, C. J. Tetrahedron Lett. 2001, 42, 817-820. (d) Hao,
J.; Aiguade, J.; Forsyth, C. J. Tetrahedron Lett. 2001, 42, 821-824. (e)
Forsyth, C. J.; Hao, J.; Aiguade, J. Angew. Chem., Int. Ed. 2001, 40, 3663-
3667. (f) Li, Y.; Zhou, F.; Forsyth, C. J. Angew. Chem., Int. Ed. 2007, 46,
279-282.
(7) (a) Sasaki, M.; Iwamuro, Y.; Nemoto, J.; Oikawa, M. Tetrahedron
Lett. 2003, 44, 6199-6201. (b) Ishikawa, Y.; Nishiyama, S. Tetrahedron
Lett. 2004, 45, 351-354. (c) Ishikawa, Y.; Nishiyama, S. Heterocycles 2004,
63, 539-565. (d) Ishikawa, Y.; Nishiyama, S. Heterocycles 2004, 63, 885-
893. (e) Oikawa, M.; Uehara, T.; Iwayama, T.; Sasaki, M. Org. Lett. 2006,
8, 3943-394.
(8) Cardilo, G.; Orena, M. Tetrahedron 1990, 46, 3321-3408.
(9) For general reviews on spiroketal syntheses: (a) Perron, F.; Albizati,
K. F. Chem. ReV. 1989, 89, 1617-1661. (b) Pietruszka, J. Angew. Chem.,
Int. Ed. 1998, 37, 2629-2636. (c) Francke, W.; Kitching, W. Curr. Org.
Chem. 2001, 5, 233-251. (d) Brimble, M. A.; Furkert, D. P. Curr. Org.
Chem. 2003, 7, 1461-1484. (e) Mead, K. T.; Brewer, B. N. Curr. Org.
Chem. 2003, 7, 227-225. Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem.
ReV. 2005, 105, 4406-4440.
Wittig olefination, Mitsunobu, and thioether oxidation pro-
tocols.14 We envisaged a synthesis of the CD fragment 8, in
which the C14 methyl group would be installed through the
opening of a cyclopropanated glycal.15 Thus, the D-ring was
identified in the known C-allylated ribofuranoside 12,16
which was transformed to the 3-deoxy derivative 14 through
straightforward alcohol protection and deoxygenation steps
(Scheme 3).17,18
(10) Selected recent synthesis of complex spiroketals: (a) Hao, J.;
Forsyth, C. J. Tetrahedron Lett. 2002, 43, 1-2. (b) Crimmins, M. T.; Katz,
J. D.; Washburn, D. G.; Allwein, S. P.; McAtee, L. F. J. Am. Chem. Soc.
2002, 124, 5661-5663. (c) Holson, E. B.; Roush, W. R. Org. Lett. 2002,
4, 3719-3723. (d) Tsang, K. I.; Brimble, M. A.; Bremner, J. B. Org. Lett.
2003, 5, 4425-4427. (e) Wang, L.; Floreancig, P. E. Org. Lett. 2004, 6,
569-572. (f) Liu, J.; Hsung, R. P. Org. Lett. 2005, 7, 2273-2276. (g)
Statsuk, A. V.; Liu, D.; Kozmin, S. J. Am. Chem. Soc. 2004, 126, 9546-
9547. (h) Takaoka, L. R.; Buskmelter, A. J.; LaCruz, T. E.; Rychnovsky,
S. D. J. Am. Chem. Soc. 2005, 127, 528-529. (i) Potuzaz, J. S.; Moilanen,
S. B.; Tan, D. S. J. Am. Chem. Soc. 2005, 127, 13796-13797.
(11) For a recent example of Au(I) alkyne spiroketalization: Liu, B.;
De Brabander, J. K. Org. Lett. 2006, 8, 4907-4910.
Hydroxyalkene 14 was next transformed to bicyclic glycal
16 following the protocol developed by Postema (Scheme
(13) Earle, M. J.; Abdur-Rashid, A.; Priestley, N. D. J. Org. Chem. 1996,
61, 5697-5700.
(14) Zhu, L.; Mootoo, D. R. Org. Biomol. Chem. 2005, 3, 2750-2754.
(15) (a) Bertinato, P.; Sorensen, E. J.; Meng, D.; Danishefsky, S. J. J.
Org. Chem. 1996, 61, 8000-8001. (b) Ramana, C. V.; Murali, R.;
Nagarajan, M. J. Org. Chem. 1997, 62, 7694-7703.
(16) 12 is obtained in two steps from commercially available 1-O-acetyl-
2,3,5-tri-O-benzoyl-â-D-ribofuranose: Kozikowski, A. P.; Sorgi, K. L.;
Wang, B. C.; Xu, Z. B. Tetrahedron Lett. 1983, 24, 1563-1566.
(17) Bertus, P.; Zhang, J. H.; Sir, G.; Weibel, J. M.; Pale, P. Tetrahedron
Lett. 2003, 44, 3391-3395.
(12) For a strategically similar approach to the ABCD subunit, based
on alkyne functionalization, see ref 6f.
4304
Org. Lett., Vol. 9, No. 21, 2007