3446
N. Sultan et al. / Tetrahedron Letters 52 (2011) 3443–3446
ˇ
5. (a) Fišera, L.; Pavlovic, D. Collect. Czech. Chem. Commun. 1984, 49, 1990–2000;
(b) Lyle, F. R. U.S. Patent 5 973 257, 1985; Chem. Abstr. 1985, 65, 2870.
6. Jungheim, L. N.; Sigmund, S. K. J. Org. Chem. 1987, 52, 4007–4013.
7. Höfle, G.; Glaser, N. PCT Int. Appl. WO 02/24712, 2002.
O
HNR
O
CRL
Me MeO
HNR
O
2
+
O
Si
Et
4 days
MeO
O
8. (a) Aitken, R. A.; Hérion, H.; Janosi, A.; Karodia, N.; Raut, S. V.; Seth, S.; Shannon,
I. J.; Smith, F. C. J. Chem. Soc., Perkin Trans. 1 1994, 2467–2472; (b) Aitken, R. A.;
Hérion, H.; Janosi, A.; Raut, S. V.; Seth, S.; Shannon, I. J.; Smith, F. C. Tetrahedron
Lett. 1993, 34, 5621–5622.
9. For the importance of the temperature in order to obtain the
acetylenedicarboxylate, see: Aitken, R. A.; Morrison, J. J. ARKIVOC 2008, X,
103–112.
10. Charlton, J. L.; Chee, G. Tetrahedron Lett. 1994, 35, 6243–6246.
11. Hashmi, A. S. K.; Grundl, M. A.; Rivas Nass, A.; Naumann, F.; Bats, J. W.; Bolte,
M. Eur. J. Org. Chem. 2001, 4705–4732.
12. (a) Wong, C.-H.; Whitesides, G. M. In Enzymes in Synthetic Organic Chemistry;
Tetrahedron organic chemistry series; Baldwin, J. E., Magnus, P. D., Eds.;
Pergamon, 1994; 12, (b) Poppe, L.; Novák, L. Selective Biocatalysis; VCH,
Weiheim: New York, 1996; (c) Itah, T.; Takagi, Y.; Murakami, T.; Hiyama, Y.;
Tsukube, H. In Preparative Biotransformations; Todd, C., Ed.; John Wiley & Sons:
Chichester, UK, 1996; (d) García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev.
2005, 105, 313–354.
13. (a) Guibé-Jampel, E.; Rousseau, G. Tetrahedron Lett. 1987, 28, 3563–3564; (b)
Gutman, A. L.; Shapira, M. J. Chem. Soc., Chem. Commun. 1991, 1467–1468; (c)
Gutman, A. L.; Shapira, M.; Boltanski, A. J. Org. Chem. 1993, 57, 1063–1065; (d)
Ozasa, N.; Tokioka, K.; Yamamoto, Y. Biosci. Biotech. Biochem. 1995, 59, 1905–
1907; (e) Liljeblad, A.; Kanerva, L. T. Tetrahedron: Asymmetry 1999, 10, 4405–
4415; (f) Liljeblad, A.; Lindborg, J.; Kanerva, L. T. Tetrahedron: Asymmetry 2000,
11, 3957–3966; (g) Liljeblad, A.; Aksela, R.; Kanerva, L. T. Tetrahedron:
Asymmetry 2001, 12, 2059–2066; (h) Gedey, S.; Liljeblad, A.; Lázár, L.; Fülöp,
F.; Kanerva, L. T. Can. J. Chem. 2002, 80, 565–570.
14. Kojima, M.; Kondo, T. Agric. Biol. Chem. 1985, 49, 2467–2469.
15. (a) Ghogare, A.; Sudesh Kumar, G. J. Chem. Soc., Chem. Commun. 1989, 1533–
1535; (b) Ottolina, G.; Carrea, G.; Riva, S. J. Org. Chem. 1990, 55, 2366–2369; (c)
Margolin, A. L.; Fitzpatrick, P. A.; Dubin, P. L.; Klibanov, A. M. J. Am. Chem. Soc.
1991, 113, 4693–4694.
R = Ph
R = Pr
8
9
no reaction
Conv. = 30%
10
11%
O
Scheme 3. Transesterification of amidoesters.
O
Me Me
CRL
+
R' OH
R1
O
Si
4 days
MeO
O
n
2
3
4
5
n = 1, R1 = Et
n = 1, R1 = H
n = 2, R1 = Et
n = 3, R1 = Et
11
12
13
14
85%
68%
80%
75%
Scheme 4. Preparation of propiolates.
From a synthetic point of view, the ability of this lipase to
catalyze the transesterification of methyl propiolate with alco-
hols 2–5 is also interesting, because of the particularly mild
reaction conditions: no activation of the propiolic acid required,
neutral conditions, near to room temperature (Scheme 4).
16. (a) Ikeda, I.; Tanaka, J.; Suzuki, K. Tetrahedron Lett. 1991, 32, 6865–6866; (b)
Moris, F.; Gotor, V. J. Org. Chem. 1993, 58, 653–660; (c) Ema, T.; Maeno, S.; Takaya,
Y.; Sakai, T.; Utaka, M. J. Org. Chem. 1996, 61, 8610–8616; (d) Nakajima, N.;
Ishihara, K.; Matsumura, S.; Hamada, H.; Nakamura, K.; Furuya, T. Biosci. Biotech.
Biochem. 1997, 61, 1926–1928; (e) Geresh, S.; Elbaz, E.; Glaser, R. Tetrahedron
1993, 49, 4939–4944; (f) Takagi, Y.; Ino, R.; Kihara, H.; Itoh, T.; Tsukube, H. Chem.
Lett. 1997, 1247–1248; (g) Bisht, K. S.; Gross, R. A.; Kaplan, D. L. J. Org. Chem. 1999,
64, 780–789; (h) Cuiper, A. D.; Kouwijzer, M. L. C. E.; Grootenhuis, P. D. J.; Kellogg,
R. M.; Feringa, B. L. J. Org. Chem. 1999, 64, 9529–9537; (i) Haughton, L.; Williams,
J. M. J.; Zimmermann, J. A. Tetrahedron: Asymmetry 2000, 11, 1697–1701; (j)
Bakker, M.; Spruijt, A. S.; van Rantwijk, F.; Sheldon, R. A. Tetrahedron: Asymmetry
2000, 11, 1801–1808; (k) Sundby, E.; Perk, L.; Anthonsen, T.; Aasen, A. J.; Hansen,
T. V. Tetrahedron 2004, 60, 521–524; (l) Maruyama, T.; Kotani, T.; Yamamura, H.;
Kamiya, N.; Goto, M. Org. Biomol. Chem. 2004, 2, 524–527; (m) Akai, S.; Tanimoto,
K.; Kita, Y. Angew. Chem., Int. Ed. 2004, 43, 1407–1410; (n) Langille, N. F.; Panek, J.
S. Org. Lett. 2004, 6, 3203–3206; (o) Colombo, D.; Franchini, L.; Toma, L.;
Ronchetti, F.; Nakabe, N.; Konoshima, T.; Nishino, H.; Tokuda, H. Eur. J. Med.
Chem. 2005, 40, 69–74; (p) Vafiadi, C.; Topakas, E.; Wong, K. K. Y.; Suckling, I. D.;
Christakopoulos, P. Tetrahedron: Asymmetry 2005, 16, 373–379; (q) Gu, J.;
Ruppen, M. E.; Cai, P. Org. Lett. 2005, 7, 3945–3948; (r) Díaz-Rodríguez, A.;
Fernández, S.; Lavandera, I.; Ferrero, M.; Gotor, V. Tetrahedron Lett. 2005, 46,
5835–5838; (s) Weitkamp, P.; Vosmann, K.; Weber, N. J. Agric. Food. Chem. 2006,
54, 7062–7068; (t) Teng, R. W.; McManus, D.; Aylward, J.; Ogbourne, S.; Johns, J.;
Parsons, P.; Bacic, A. Fitoterapia 2009, 80, 233–236; (u) Chigorimbo-Murefu, N. T.
L.; Riva, S.; Burton, S. G. J. Mol. Catal. B: Enzymatic 2009, 56, 277–282; (v) Pérez, J.
A.; Trujillo, J. M.; López, H.; Aragón, Z.; Boluda, C. Chem. Pharm. Bull. 2009, 57,
882–884; (w) Chênevert, R.; Pelchat, N.; Morin, P. Tetrahedron: Asymmetry 2009,
20, 1191–1196.
3. Conclusion
Transesterification of acetylenedicarboxylates with alcohols oc-
curred in the presence of Candida rugosa lipase. Unexpectedly, a
highly selective mono-transesterification was noticed and unsym-
metrical acetylenedicarboxylates could be prepared in high yields.
This selectivity was due to the inability of this lipase to accept, in
the reactive site, propiolate ester derivatives with a too bulky
substituent in the b position.
Acknowledgments
We thank the lebanese Azm W Saada Foundation and the Inter-
national Relations Office of the University of Paris-Sud 11 for their
financial support given to N.S.
Supplementary data
Supplementary data (general procedure for the lipase-catalyzed
transesterification and spectroscopic data of the symmetrical dies-
ters 7a–b, unsymmetrical diesters 6a–j, amidoester 10 and propi-
olates 11–14) associated with this article can be found, in the
17. Also named Candida cylindracea.
18. Rebolledo, F.; Brieva, R.; Gotor, V. Tetrahedron Lett. 1989, 30, 5345–5346.
19. Cohen, S. G.; Klee, L. H.; Weinstein, S. Y. J. Am. Chem. Soc. 1966, 88, 5302–5305.
20. Furylsilylalcanols were prepared using known reported methods, see: (a)
Djerourou, A.; Blanco, L. Tetrahedron Lett. 1991, 32, 6325–6326; (b) Díez-
González, S.; Paugam, R.; Blanco, L. Eur. J. Org. Chem. 2008, 3298–3307.
21. Various silylmethanol derivatives were prepared by lipase-catalyzed
transesterification, see Ref. [20a].
22. (a) Theil, F.; Ballschuh, S.; Schick, H.; Haupt, M.; Häfner, B.; Schwarz, S.
Synthesis 1988, 540–541; (b) Fadel, A.; Arzel, P. Tetrahedron: Asymmetry 1997,
8, 283–291.
23. No rationalization may be proposed about the influence of molecular sieves in
petroleum ether since dimethyl and diethyl acetylenedicarboxylates are poorly
soluble in this solvent.
24. Supplied by Roth.
25. This alcohol 5 was particularly prone to degradation. For example, it was
References and notes
1. (a) Xing, Y. D.; Huang, N. Z. J. Org. Chem. 1982, 47, 140–142; (b) Fry, A. J.;
Sherman, L. R.; Beaulieu, A. R.; Sherwin, C. J. Org. Chem. 1990, 55, 389–391; (c)
Saksena, A. K.; Girijavallabhan, V. M.; Chen, Y.-T.; Jao, E.; Pike, E.; Desai, J. A.;
Rane, D.; Ganguly, A. K. Heterocycles 1993, 35, 129–134; (d) Wei, K.; Gao, H.-T.;
Li, W. D. Z. J. Org. Chem. 1982, 47, 140–142.
2. (a) Mahajna, M.; Quistad, G. B.; Casida, J. E. Chem. Res. Toxicol. 1996, 9, 241–246;
(b) Blanco, L.; Bloch, R.; Bugnet, E.; Deloisy, S. Tetrahedron Lett. 2000, 41, 7875–
7878; (c) Soret, A.; Blanco, L.; Deloisy, S. Lett. Org. Chem. 2006, 3, 648–653; (d)
Albert, S.; Soret, A.; Blanco, L.; Deloisy, S. Tetrahedron 2007, 63, 2888–2900; (e)
Albert, S.; Blanco, L.; Deloisy, S. ARKIVOC 2009, Xiii, 78–96; (f) Hong, V.;
Kislukhin, A. A.; Finn, M. G. J. Am. Chem. Soc. 2009, 131, 9986–9994.
3. (a) Soret, A.; Guillot, R.; Rousseau, G.; Blanco, L.; Deloisy, S. Synlett 2007, 1284–
1288; (b) Soret, A.; Müller, C.; Guillot, R.; Blanco, L.; Deloisy, S. Tetrahedron
2011, 67, 698–705.
prepared from
a corresponding allylsilane by hydroboration followed by
oxidation and formation of 1,1-dimethyl-1-sila-2-oxacyclopentane and 2-
ethylfuran was noticed during storage or chromatography if borane derivatives
remained after the oxidation step.
4. (a) van Berkel, S. S.; Dirks, A. J.; Debets, M. F.; van Delft, F. L.; Cornelissen, J. J. L.
M.; Nolte, R. J. M.; Rutjes, F. P. J. T. ChemBioChem 2007, 8, 1504–1508; (b)
Buchanan, J. G.; Sable, H. Z. In Selective Organic Transformations; Thyagarajan, B.
S., Ed.; Wiley-Interscience: New York, 1972; 2, pp 1–95.
26. Supplied by Aldrich.
27. Supplied by Prolabo.
28. Holmquist, M.; Hæffner, F.; Norin, T.; Hult, K. Protein Sci. 1996, 5, 83–88.