16 For an example of a nucleophilic addition to a non-enolizable b-
carbonyl group, see: A. Yanagisawa, Y. Matsuzaki and H. Ya-
mamoto, Synlett, 2001, 1855.
17 A. Nishida, M. Shibasaki and S. Ikegami, S. Chem. Pharm. Bull.,
1986, 34, 1434.
18 For examples of cyclization–oxidation sequences, see: (a) A. J.
Phillips, Y. Uto, P. Wipf, M. J. Reno and D. R. Williams, Org. Lett.,
2000, 2, 1165; (b) A. I. Meyers and F. X. Tavares, J. Org. Chem., 1996,
61, 8207; (c) F. Tavares and A. I. Meyers, Tetrahedron Lett., 1994, 35,
6803; (d) F. W. Eastwood, P. Perlmutter and Q. Yang, Tetrahedron
Lett., 1994, 35, 2039; (e) J. C. Barrish, J. Singh, S. H. Spergel, W.-C.
Han, T. P. Kissick, D. R. Kronenthal and R. H. Mueller, J. Org.
Chem., 1993, 58, 4494; (f) F. Yokokawa, Y. Hamada and T. Shioiri,
Synlett, 1992, 153; (g) C. Kashima and H. Arao, Synthesis, 1989,
873; (h) D. L. Evans, D. K. Minster, U. Jordis, S. M. Hecht, A. L.
Mazzu and A. I. Meyers, J. Org. Chem., 1979, 44, 497.
19 For an oxidation–cyclization sequence, see: (a) P. Wipf and T. H.
Graham, J. Org. Chem., 2001, 66, 3242; (b) P. Wipf and S. Lim,
Chimia, 1996, 50, 157; (c) P. Wipf and S. Lim, J. Am. Chem. Soc.,
1995, 117, 558; (d) P. Wipf and C. P. Miller, J. Org. Chem., 1993, 58,
3604.
Scheme 5
reactions. Although the C2-b-aldehyde 4 proved to be unstable,
alkyne 9 could be converted to 1,3-dithiolane 11 and thioester
13. The 1,3-dithiolane 17, derived from internal alkyne 16, was
readily converted to the C2-b-keto oxazole scaffold found in
numerous biologically active natural products. Internal alkynes
can therefore serve as a masked form of the C2-b-carbonyl
function which can be unveiled under mild conditions. Thioenol
ethers such as 10a and 22–24 represent readily accessible metal-
binding motifs. In addition, hydrohalogenation of 9 affords
predominantly (Z)-configured vinyl bromides and iodides under
kinetic control. The addition of an acetate salt to the reaction
mixture improves the (Z/E)-ratio and the overall yield. The cor-
responding (E)-vinyl halides are obtained under thermodynamic
control. Both (Z)- and (E)-vinyl iodides readily participate in
cross-coupling reactions. Accordingly, the conjugate addition
of heteronucleophiles to oxazole and oxazoline alkynes offers
a unique, mild and flexible approach to C(2)-functionalized
heterocyclic building blocks for the synthesis of biologically
active products.
20 (a) L. A. Dakin, N. F. Langille and J. S. Panek, J. Org. Chem., 2002,
67, 6812; (b) K. J. Hodgetts and M. T. Kershaw, Org. Lett., 2002,
4, 2905; (c) N. F. Langille, L. A. Dakin and J. S. Panek, Org. Lett.,
2002, 4, 2485.
21 (a) Y. Wang, J. Janjic and S. A. Kozmin, J. Am. Chem. Soc., 2002,
˚
124, 13670; (b) R. D. Connell, F. Scavo, P. Helquist and B. Akermark,
Tetrahedron Lett., 1986, 27, 5559.
22 J. Coste, D. Le-Nguyen and B. Castro, Tetrahedron Lett., 1990, 31,
205.
23 While this work was in progress, Hoffmann and co-workers reported
the synthesis of the ethyl ester of 9 by a different route: (a) I. V.
Hartung, U. Eggert, L. O. Haustedt, B. Niess, P. M. Scha¨fer and
H. M. R. Hoffmann, Synthesis, 2003, 1844; (b) L. O. Haustedt, S. B.
Panicker, M. Kleinert, I. V. Hartung, U. Eggert, B. Niess and H. M. R.
Hoffmann, Tetrahedron, 2003, 59, 6967.
24 In contrast, 2-vinyloxazole-4-carboxylic acid ethyl ester is reported
to be unstable to storage: W. A. Donaldson and F. Ahmed, Synth.
Commun., 2003, 33, 2685.
25 H. Kuroda, I. Tomita and T. Endo, Synth. Commun., 1996, 26, 1539.
26 J. Inanaga, Y. Baba and T. Hanamoto, Chem. Lett., 1993, 241.
27 S. Cossu, O. De Lucchi and R. Durr, Synth. Commun., 1996, 26,
4597.
Acknowledgements
This work has been supported by a grant from the National
Institutes of Health (GM-55433).
28 W. E. Truce and G. J. W. Tichenor, J. Org. Chem., 1972, 37, 2391.
29 Attempts to oxidize 2-(2-hydroxyethyl)oxazole-4-carboxylic acid
methyl ester also resulted in decomposition:
References and notes
1 R. S. Roy, A. M. Gehring, J. C. Milne, P. J. Belshaw and C. T. Walsh,
Nat. Prod. Rep., 1999, 16, 249.
2 (a) P. Wipf, Chem. Rev., 1995, 95, 2115; (b) Z. Jin, Nat. Prod. Rep.,
2003, 20, 584; (c) Oxazoles: Synthesis, reactions, and spectroscopy,
Part A, D. C. Palmer, ed., J. Wiley & Sons, Inc., Hoboken, NJ, 2003,
vol. 60.
3 C. T. Walsh, ChemBioChem, 2002, 3, 124.
4 T. F. Molinski, Tetrahedron Lett., 1996, 37, 7879.
5 (a) R. Jansen, H. Irschik, H. Reichenbach, V. Wray and G. Ho¨fle,
Liebigs Ann. Chem., 1994, 759; (b) H. Irschik, R. Jansen, K. Gerth,
G. Ho¨fle and H. Reichenbach, J. Antibiot., 1995, 48, 31; (c) P. Wipf
and T. H. Graham, J. Am. Chem. Soc., 2004, 126, 15346.
6 G. R. Delpierre, F. W. Eastwood, G. E. Gream, D. G. I. Kingston,
P. S. Sarin, A. R. Todd and D. H. Williams, J. Chem. Soc. C, 1966,
1653.
7 J. W. Chamberlin and S. Chen, J. Antibiot., 1977, 30, 197.
8 G. I. Birnbaum and S. R. Hall, J. Am. Chem. Soc., 1976, 98, 1926.
9 (a) P. Wipf, Y. Aoyama and T. E. Benedum, Org. Lett., 2004, 6,
3593; (b) L. Scarone, D. Sellanes, E. Manta, P. Wipf and G. Serra,
Heterocycles, 2004, 63, 773; (c) P. Wipf and J.-L. Methot, Org. Lett.,
2001, 3, 1261; (d) P. Wipf, C. P. Miller and C. M. Grant, Tetrahedron,
2000, 56, 9143.
30 (a) H. Tokuyama, S. Yokoshima, S.-C. Lin, L. Li and T. Fukuyama,
Synthesis, 2002, 1121; (b) T. Fukuyama, S.-C. Lin and L. Li, J. Am.
Chem. Soc., 1990, 112, 7050.
31 B. M. Trost, T. N. Salzmann and K. Hiroi, J. Am. Chem. Soc., 1976,
98, 4887.
32 (a) V. K. Aggarwal and B. N. Esquivel-Zamora, J. Org. Chem., 2002,
67, 8618; (b) V. K. Aggarwal, A. Thomas and S. Schade, Tetrahedron,
1997, 53, 16213; (c) V. K. Aggarwal, A. Thomas and R. J. Franklin,
J. Chem. Soc., Chem. Commun., 1994, 1653.
33 Palladium on carbon (Pd/C) failed to catalyze the reaction. For the
use of Pd(OH)2/C, see: Y. Mori and M. Seki, J. Org. Chem., 2003,
68, 1571.
34 For examples of enols that display intramolecular hydrogen bonding
to nitrogen heterocycles, see: (a) L. W. Deady and T. Rodemann,
J. Heterocycl. Chem., 2001, 38, 1185; (b) O. L. Acevedo, R. S.
Andrews, M. Dunkel and P. D. Cook, J. Heterocycl. Chem., 1994,
31, 989.
35 E. J. Corey and B. W. Erickson, J. Org. Chem., 1971, 36, 3553.
36 1H NMR studies in CDCl3 revealed strong chelation of thioether
10a to Ag(I) and Zn(II) salts. This scaffold may therefore be of broad
utility in applications where rapid and straightforward access to
metal-binding ligands is required. For a review of thioether ligands,
see: A. M. Masdeu-Bulto´, M. Die´guez, E. Martin and M. Go´mez,
Coord. Chem. Rev., 2003, 242, 159.
10 To the best of our knowledge, this transformation has never been
reported with oxazoles or oxazolines. However, HCl has been added
to a 2-alkynyl thioazoline: R. C. Cambie, D. Chambers, P. S. Rutledge
and P. D. Woodgate, J. Chem. Soc., Perkin Trans. 1, 1981, 40.
11 D. A. Evans, V. J. Cee, T. E. Smith and K. J. Santiago, Org. Lett.,
1999, 1, 87.
˚
12 A. R. Gangloff, B. Akermark and P. Helquist, J. Org. Chem., 1992,
37 A. Pfaltz, Chimia, 2001, 55, 708.
38 P. Wipf and X. Wang, Org. Lett., 2002, 4, 1197.
57, 4797.
13 P. Breuilles and D. Uguen, Tetrahedron Lett., 1998, 39, 3149.
14 D. R. Williams, M. P. Clark, U. Emde and M. A. Berliner, Org. Lett.,
2000, 2, 3023.
15 Y. Nagao, S. Yamada and E. Fujita, Tetrahedron Lett., 1983, 24,
2287.
39 A. Cevallos, R. Rios, A. Moyano, M. A. Perica`s and A. Riera,
Tetrahedron: Asymmetry, 2000, 11, 4407.
40 K. Bowden and M. J. Price, J. Chem. Soc. B, 1970, 1466.
41 M. Taniguchi, S. Kobayashi, M. Nakagawa, T. Hino and Y. Kishi,
Tetrahedron Lett., 1986, 27, 4763.
3 4
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 3 1 – 3 5