7462
S. Watanabe et al. / Tetrahedron Letters 45 (2004) 7459–7463
Voloshchuk, S. A. Zh. Org. Khim. 1978, 14, 958–962; (f)
Shevelev, S. A.; Semenov, V. V.; FainzilÕberg, A. A. Izv.
Akad. Nauk SSSR, Ser. Khim. 1978, 1091–1098.
4. (a) Magdesieva, N. N.; Kyandzhetsian, R. A. Zh. Org.
Khim. 1973, 9, 1755–1756; (b) Magdesieva, N. N.;
Kyandzhetsian, R. A. Zh. Org. Khim. 1974, 10, 1708–
1711; (c) Magdesieva, N. N.; Kyandzhetsian, R. A.;
Astafurov, V. M. Zh. Org. Khim. 1975, 11, 508–511; (d)
Tamagaki, S.; Akatsuka, R.; Kozuka, S. Bull. Chem. Soc.
Jpn. 1980, 53, 817–818.
5. (a) Magdesieva, N. N.; Kyandzhetsian, R. A.; Gordeev,
M. F. Zh. Org. Khim. 1982, 18, 2514–2523; (b) Kataoka,
T.; Tomimatsu, K.; Shimizu, H.; Hori, M. Tetrahedron
Lett. 1983, 24, 75–78.
6. Semenov, V. V.; MelÕnikova, L. G.; Shevelev, S. A.;
FainzilÕberg, A. A. Izv. Akad. Nauk SSSR, Ser. Khim.
1980, 138–144.
The initial step of the above reaction is presumed to be a
formation of an N-sulfonylaldimine and a hydroxide ion
from a p-toluenesulfonamide monosodium salt and an
aromatic aldehyde. The subsequent reaction of the N-
sulfonylaldimine with b-ketoselenonium ylide, which is
generated by an alkynylselenonium salt and a hydroxide
ion would lead to producing an aziridine derivative.
However, the reaction of alkynylselenonium salt 1a with
N-tosyl-4-nitrobenzaldimine and lithium hydroxide in
the presence of triethylamine and silver trifluoromethan-
sulfonate at room temperature for 10h gave oxiranyl-
ketone 2a in 42% yield and the desired aziridine
derivative was not obtained. The reason for the cis selec-
tivity on the aziridine formation is attributable to the
stability of the cis-isomer.18 While so far reports on
the preparation of aziridines starting from ylides and
imines are limited,17,19 we have been able to achieve a
novel type of aziridine formation reaction using alkynyl-
selenonium salt, aldehyde, and sodium p-toluene-
sulfonamide.
7. Lotz, W. W.; Gosselck, J. Tetrahedron 1973, 29, 917–919.
8. Magdesieva, N. N.; Kyandzhetsian, R. A.; Chovnikova,
N. G.; EmelÕyanova, N. N. Zh. Org. Khim. 1981, 17, 340–
342.
9. Hashimoto, T.; Kitano, H.; Fukui, K. Nippon Kagaku
Zasshi 1968, 89, 784–786.
10. (a) Kataoka, T.; Banno, Y.; Watanabe, S.; Iwamura, T.;
Shimizu, H. Tetrahedron Lett. 1997, 38, 1809–1812; (b)
Kataoka, T.; Watanabe, S.; Yamamoto, K.; Yoshimatsu,
M.; Tanabe, G.; Muraoka, O. J. Org. Chem. 1998, 63,
6382–6386; (c) Watanabe, S.; Yamamoto, K.; Itagaki, Y.;
Kataoka, T. J. Chem. Soc., Perkin Trans. 1 1999, 2053–
2055; (d) Watanabe, S.; Mori, E.; Nagai, H.; Kataoka, T.
Synlett 2000, 49–52; (e) Watanabe, S.; Mori, E.; Nagai,
H.; Iwamura, T.; Iwama, T.; Kataoka, T. J. Org. Chem.
2000, 65, 8893–8898; (f) Watanabe, S.; Yamamoto, K.;
Itagaki, Y.; Iwamura, T.; Iwama, T.; Kataoka, T.;
Tanabe, G.; Muraoka, O. J. Chem. Soc., Perkin Trans. 1
2001, 239–247.
In summary, we have developed a novel synthetic
method of ketodiphenylselenonium ylide from alkyny-
lselenonium salt, and the formation of the ylide was
indirectly confirmed by a trap of aldehydes to afford
oxiranyl-ketones. On the other hand, by the use of
sodium p-toluenesulfonamide as nucleophile instead of
lithium hydroxide, benzoyl aziridines were obtained in
moderate yields. A silver cation assists the Michael-type
addition of hydroxide to an alkynylselenonium salt.
Although the excess amount of starting materials
toward aldehyde is a disadvantage, we found interesting
reactions with alkynylselenonium salt involving the con-
trol on the addition of a hydroxide ion with a silver ion
to alkynylselenoioum salt. In addition, the preparation
of oxiranes and aziridines was successful by only chang-
ing the hydroxide to amide. This is the first example in
which an alkynylonium salt is used as an ylide precur-
sor. Further applications of this methodology are cur-
rently underway in our laboratory.
11. (a) Detty, M. R. J. Org. Chem. 1980, 45, 274–279;
Harirchian, B.; Magnus, P. D. Chem. Commun. 1977, 522–
523.
12. Shi, M.; Itoh, N.; Masaki, Y. J. Chem. Res. (S) 1995,
304–305.
13. Typical procedure: Alkynylselenonium salt 1 (0.8mmol),
an aromatic aldehyde (0.2mmol) and silver triflate
(0.8mmol) were dissolved in CH2Cl2–MeCN (4:1, 5mL).
Anhydrous lithium hydroxide (1.2mmol) and then trieth-
ylamine (0.8mmol) were added to the solution. The
mixture was stirred for 1.5–12h at room temperature.
The typical work-up with water, extraction with ethyl
acetate, and preparative TLC purification afforded 2.
14. Chlorophenylethynyldiphenylselenonium triflate 1c was
prepared by the addaption of published procedure.10b
15. (a) Enders, D.; Zhu, J.; Kramps, L. Liebigs Ann. Chem.
1997, 1101–1113; (b) Mukaiyama, T.; Iwasawa, N.;
Stevens, R. W.; Haga, T. Tetrahedron 1984, 40, 1381–1390.
16. Bottini, F.; Grazia, M. D.; Finocchiaro, P.; Fronczek
F. R.; Mamo, A.; Pappalardo, S. J. Org. Chem. 1988, 53,
3521–3529.
Acknowledgements
This research was partially supported by the Ministry of
Education, Science, Sports, and Culture, Grant-in-Aid
for the Encouragement of Young Scientists (B), 2004,
14771246.
References and notes
17. Matano, Y.; Yoshimune, M.; Suzuki, H. J. Org. Chem.
1995, 60, 4663–4665.
1. Paulmier, C. Selenium Reagents and Intermediates in
Organic Synthesis; Pergamon: Oxford, 1986.
18. (a) Ibuka, T.; Mimura, N.; Aoyama, H.; Akaji, M.; Ohno,
H.; Miwa, Y.; Taga, T.; Nakai, K.; Tamamura, H.; Fujii,
N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 999–1015; (b)
Ibuka, T.; Mimura, N.; Ohno, H.; Nakai, K.; Akaji, M.;
Habashita, H.; Tamamura, H.; Miwa, Y.; Taga, T.; Fujii,
N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 2982–2991; (c)
Ohno, H. Yakugaku Zasshi 2001, 121, 733–741.
19. (a) Wan, D.; Dai, L.; Hou, X. Chem. Commun. 1997,
1231–1232; (b) Ochiai, M.; Kitagawa, Y. Tetrahedron
Lett. 1998, 39, 5569–5570; (c) Ochiai, M.; Kitagawa, Y.
2. (a) Magdesieva, N. N.; Chovnikova, N. G. Zh. Org. Khim.
1979, 15, 2402–2405; (b) Johnson, A. W.; Amel, R. T.
J. Org. Chem. 1969, 34, 1240–1247.
3. (a) Ernstbrunner, E.; Lloyd, D. Liebigs Ann. Chem. 1971,
753, 196–198; (b) Magdesieva, N. N.; Kyandzhetsian, R.
A. Zh. Org. Khim. 1971, 7, 2228; (c) Magdesieva, N. N.;
Kyandzhetsian, R. A.; Ibragimov, A. A. J. Organomet.
Chem. 1972, 42, 399–404; (d) Wei, K. H.; Paul, I. C.;
Chang, M. M. Y.; Musher, J. I. J. Am. Chem. Soc. 1974,
96, 4099–4102; (e) Derkach, N. Y.; Tishchenko, N. P.;