V. T. H. Nguyen, P. Langer / Tetrahedron Letters 46 (2005) 815–817
817
Synth. Commun. 1985, 15, 217; (i) Schultz, A. G.; Dittami,
J. P. J. Org. Chem. 1983, 48, 2318; (j) Chatani, N.; Murai,
S.; Sonoda, N. J. Am. Chem. Soc. 1983, 105, 1370.
7. For bromo-substituted mono-silyl enol ethers, see: (a)
Marko, I. E.; Dumeunier, R.; Leclercq, C.; Leroy, B.;
Plancher, J.-M.; Mekhalfia, A.; Bayston, D. J. Synthesis
2002, 958; (b) Oku, A.; Miki, T.; Abe, M.; Ohira, M.;
Kamada, T. Bull. Chem. Soc. Jpn. 1999, 72, 511; (c) Rigby,
J. H.; Rege, S. D.; Sandanayaka, V. P.; Kirova, M. J. Org.
Chem. 1996, 61, 842.
O
O
Cl
Me3SiO
OSiMe3
OEt
OH
O
12
OEt
Cl
i
5
Cl
O
O
ii
13 (53%)
8. Lambert, P. H.; Vaultier, M.; Carrie, R. J. Org. Chem.
1985, 50, 5352.
OEt
9. General procedure: to a CH2Cl2 solution of 5 and 9 was
dropwise added TiCl4 at ꢀ78 °C under argon atmosphere.
The solution was stirred at ꢀ78 °C for 30 min and was
subsequently warmed to 20 °C within 18 h. To the solution
was added a saturated aqueous solution of NaHCO3. The
organic and the aqueous layer were separated and the
latter was extracted with ether. The combined organic
layers were dried (Na2SO4), filtered and the filtrate was
concentrated in vacuo. The residue was purified by
chromatography (silica gel, n-hexane–EtOAc 30/1). Syn-
thesis of 10a: starting with 5 (2.90 g, 8.2 mmol), 9a (1.42 g,
8.2 mmol), TiCl4 (1.55 g, 8.2 mmol) in CH2Cl2 (15 ml),
10a was isolated as a colourless oil (1.02 g, 46%). 1H NMR
(300 MHz, CDCl3): d = 1.42 (t, 3H, CH3CH2O), 2.00 (m,
2 H, CH2CH2CH2Cl), 2.25 (s, 3 H, CH3), 2.49 (s, 3 H,
CH3), 2.78 (t, 2 H, CH2CH2CH2Cl), 3.61 (t, 2 H,
CH2CH2CH2Cl), 4.42 (q, 2 H, CH3CH2O), 6.54 (s, 1 H,
CH), 11.76 (s, 1 H, OH). 13C NMR (75 MHz, CDCl3):
d = 14.2 (CH3), 19.8 (CH3), 23.6 (CH2), 23.9 (CH2), 31.8
(CH2), 45.3 (CH2), 61.4 (CH2), 109.7 (C), 124.8 (CH),
125.2 (C), 138.4 (C), 143.1 (C), 161.1 (C), 172.2 (C). MS
(EI, 70 eV): m/z = 272 (M+, 6), 271 (M+ + 1), 270 (M+,
21), 224 (20), 189 (100), 162 (25), 161 (23), 91 (10). IR
(KBr, cmꢀ1):
Cl
14 (77%)
Scheme 6. Synthesis of benzopyran 14 Reagents and conditions:
i. TiCl4 (2 equiv), CH2Cl2, ꢀ78 ! 20 °C; ii. NaH, TBAI, THF, 20 °C.
Acknowledgments
Financial support from the Ministry of Education of
Vietnam (scholarship for V.T.H.N.) and from the Deut-
sche Forschungsgemeinschaft is gratefully acknowl-
edged. We thank Ms. Esen Bellur for an experimental
contribution.
References and notes
1. For a review of domino reactions, see: (a) Tietze, L. F.;
Beifuss, U. Angew. Chem. 1993, 105, 137; Angew. Chem.,
Int. Ed. Engl. 1993, 32, 131; (b) Tietze, L. F. Chem. Rev.
1996, 96, 115.
2. (a) Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem.
Commun. 1979, 578; (b) Molander, G. A.; Cameron, K. O.
J. Am. Chem. Soc. 1993, 115, 830.
~m ¼ 2977 (s), 2937 (s), 1938 (w), 1653 (s),
1563 (m), 1447 (s), 1396 (s), 1376 (s), 1349 (s), 1311 (s),
1273 (s), 1232 (s), 1175 (s), 1037 (s), 848 (s). UV–vis (nm):
kmax (1g e) = 215.8 (4.45), 253.4 (4.00), 315.7 (3.60).
HRMS (FT-ICR): calcd for C14H20O3Cl ([M+1]+):
271.11009; found: 271.10950. All new compounds gave
satisfactory spectroscopic data and correct elemental
analyses and/or high-resolution mass data.
3. For a review of 1,3-bis-silyl enol ethers, see: Langer, P.
Synthesis 2002, 441.
4. (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980,
102, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M.
A.; Kang, G. J. Can. J. Chem. 1983, 61, 688; for [3+3]
cyclizations of 1,3-bis-silyl enol ethers with 2-acetyl-1-
silyloxybut-1-en-3-one, see: (c) Dede, R.; Langer, P.
Tetrahedron Lett. 2004, 45, 9177 for sequential Ô[3+3]-
Cyclization—Suzuki-Cross-CouplingÕ reactions of 1,3-bis-
silyl enol ethers, see: (d) Nguyen, V. T. H.; Langer, P.
Tetrahedron Lett. 2004, in press.
10. General procedure: to a THF solution of 10 and of NaH
was added TBAI. The reaction mixture was stirred at
20 °C for 20 h. The mixture was directly purified by
column chromatography (silica gel, n-hexane–EtOAc 30/
1 ! 20/1). Synthesis of 11a: starting with 10a (59 mg,
0.22 mmol), NaH (8 mg, 0.33 mmol), n-Bu4NI (144 mg,
0.44 mmol), 11a was isolated as a colourless solid (36 mg,
70%). 1H NMR (300 MHz, CDCl3): d = 1.36 (t, 3 H,
CH3CH2O), 2.02 (m, 2 H, CH2), 2.16 (s, 3 H, CH3), 2.21
(s, 3 H, CH3), 2.59 (t, 2 H, CH2), 4.14 (t, 2 H, CH2), 4.38
(q, 2 H, CH3CH2O), 6.75 (s, 1 H, CH). 13C NMR
(75 MHz, CDCl3): d = 14.3 (CH3), 18.9 (CH3), 19.0 (CH3),
22.0 (CH2), 22.2 (CH2), 60.9 (CH2), 66.1 (CH2), 118.6 (C),
120.9 (C), 123.1 (CH), 133.1 (C), 138.6 (C), 151.9 (C),
168.7 (C). MS (EI, 70 eV): m/z = 235 (M++1, 12), 234
(M+, 87), 189 (100), 161 (31), 132 (20), 102.8, 77 (12). IR
5. For sequential reactions of alkenyl-substituted 1,3-bis-silyl
enol ethers, see: (a) Langer, P.; Eckardt, T.; Stoll, M. Org.
Lett. 2000, 2991; (b) Langer, P.; Eckardt, T.; Nehad, N.
´
R.; Saleh, X.; Karime, I.; Muller, P. Eur. J. Org. Chem.
2001, 3657.
¨
6. For chloro-substituted mono-silyl enol ethers, see: (a)
Fleming, F. F.; Shook, B. C.; Jiang, T.; Steward, O. W.
Tetrahedron 2003, 59, 737; (b) Hydrio, J.; van de Weghe,
P.; Collin, J. Synthesis 1997, 68; (c) Limat, D.; Schlosser,
M. Tetrahedron 1995, 51, 5799; (d) Masters, A. P.; Parvez,
M.; Sorensen, T. S.; Sun, F. J. Am. Chem. Soc. 1994, 116,
2804; (e) Stack, D. E.; Dawson, B. T.; Rieke, R. D. J. Am.
Chem. Soc. 1991, 113, 4672; (f) Hambly, G. F.; Chan, T.
H. Tetrahedron Lett. 1986, 27, 2563; (g) Chatani, N.; Fujii,
S.; Yamasaki, Y.; Murai, S.; Sonoda, N. J. Am. Chem.
Soc. 1986, 108, 7361; (h) Poirier, J.-M.; Hennequin, L.
(KBr, cmꢀ1): m ¼ 3414 (m), 2977 (s), 2938 (s), 1716 (s),
~
1612 (m), 1574 (m), 1457 (s), 1369 (m), 1303 (s), 1273 (s),
1151 (s), 1106 (s), 1056 (s), 959 (m). UV–vis (nm): kmax (1g
e) = 206.7 (4.48), 284.5 (3.34).
11. (a) Langer, P.; Bose, G. Angew. Chem. 2003, 115, 4165; .
Angew. Chem. Int. Ed. 2003, 42, 4033; (b) Bose, G.;
Nguyen, V. T. H.; Ullah, E.; Lahiri, S.; Go¨rls H.; Langer,
P. J. Org. Chem. 2004, in press.