Communications
ꢁ
ꢁ
C O bond. Furthermore, a strong preference for the C C
gauche conformation exists for the dendrons at all solvent
ratios, in contrast to the parent glycol chain 1 and POE. The
chains from gauche,gauche+,anti to anti,gaucheꢁ,anti confor-
ꢁ ꢁ ꢁ
mations around the respective O C C OMe bonds (Fig-
ure 3b). The uniformly gaucheꢂ preference of all the C C
ꢁ
ꢁ
fact that the C C gauche preference of dendron 3 is stronger
than it is for POE or 1 suggests the occurrence of correlated
motions among the terminal glycol chains that shift the
bonds in both water and CHCl3 and the corresponding
ꢁ
conformational shift of two O C bonds from gauche to anti
upon going from CHCl3 to water is consistent with the
observed vibrational data.
ꢁ
conformational equilibria toward the lower energy C C
gauche arrangement.[4c]
The results of this study demonstrate that these dendrons
not only adopt a stable folded state in aqueous media, but also
exhibit correlated chain–chain and dendron–chain conforma-
tional equilibria. The correlated chain–chain motions induce
a shift in equilibrium of the terminal chains toward the lower-
energy gauche state, in contrast to the case of an isolated
chain (1). Similarly, solvent-induced conformational fluctua-
tions of the terminal chains are coupled with
dendron helical secondary structure through cor-
related dendron–chain motions. This work suggests
the potential of folded dendrimers to exhibit
nonlinear conformational responses to localized
structural perturbations.
Monte Carlo conformational searching of 3 (R = Me) with
the GB/SA solvation model[22] predicts an M helical bias in
CHCl3 whereas a P helix is preferred in water, in accord
with the CD studies (Figure 4). Closer inspection of each of
the lowest-energy conformers reveals that the M!P helical
inversion is correlated with a shift of two of the four glycol
[23]
Received: June 11, 2004
Revised: November 5, 2004
Published online: January 5, 2005
Keywords: amphiphiles · chirality · circular
.
dichroism · dendrimers · IR spectroscopy
[1] a) J. M. Yon, D. Perahia, C. Ghelis, Biochimie 1998,
80, 33; b) O. Jardetzky, Prog. Biophys. Mol. Biol.
1997, 65, 171; c) D. Kern, E. R. P. Zuiderweg, Curr.
Opin. Struct. Biol. 2003, 13, 748.
[2] K. L. Mayer, M. R. Earley, S. Gupta, K. Pichumani,
L. Regan, M. J. Stone, Nat. Struct. Biol. 2003, 10, 962.
[3] For a recent review of conformational cooperativity
in helical linear polymers, see: E. Yashima, K.
Maeda, T. Nishimura, Chem. Eur. J. 2004, 10, 42.
[4] a) B. Huang, M. A. Prantil, T. L. Gustafson, J. R.
Parquette, J. Am. Chem. Soc. 2003, 125, 14518; b) B.
Huang, J. R. Parquette, J. Am. Chem. Soc. 2001, 123,
2689; c) J. Recker, D. J. Tomcik, J. R. Parquette, J.
Am. Chem. Soc. 2000, 122, 10298; d) P. Gandhi, B.
Huang, J. C. Gallucci, J. R. Parquette, Org. Lett.
2001, 3, 3129.
[5] For selected examples of solvent-mediated chirality
inversion, see: a) V. V. Borovkov, G. A. Hembury, Y.
Inoue, Angew. Chem. 2003, 115, 5568; Angew. Chem.
Int. Ed. 2003, 42, 5310; b) K. Morino, K. Maeda, E.
Yashima, Macromolecules 2003, 36, 1480; c) H.
Nakashima, M. Fujiki, J. R. Koe, M. Motonaga, J.
Am. Chem. Soc. 2001, 123, 1963; d) H. Nakako, R.
Nomura, T. Masuda, Macromolecules 2001, 34, 1496;
e) S. E. Boiadjiev, D. A. Lightner, J. Am. Chem. Soc.
2000, 122, 378.
[6] a) L. Brunsveld, E. W. Meijer, A. E. Rowan, R. J. M.
Nolte, Top. Stereochem. 2003, 24, 373; b) L. Bruns-
veld, H. Zhang, M. Glasbeek, J. A. J. M. Vekemans,
E. W. Meijer, J. Am. Chem. Soc. 2000, 122, 6175.
[7] a) T. Nakano, Y. Okamoto, Chem. Rev. 2001, 101,
4013; b) M. M. Green, J.-W. Park, T. Sato, A.
Figure 4. Stereograms of the lowest-energy conformers determined by Monte Carlo confor-
mational searching (MM3) using the GB/SA solvation model for a) CHCl3 (M helicity) or
b) H2O (P helicity) as implemented in Macromodel 8.5.
Teramoto, S. Lifson, R. L. B. Selinger, J. V. Selinger,
Angew. Chem. 1999, 111, 3328; Angew. Chem. Int.
Ed. 1999, 38, 3139.
1056
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1053 –1057