and subsequent fragmentations;10 (8) samarium enolate-
aldehyde condensations;11 (9) electrophilic cyclizations of
hydroxy-alkenes;12 and (10) acid-catalyzed cyclizations of
styrenyl alcohols.13
As part of our program targeting the synthesis of the
polycyclic ether-containing natural products hemibrevetoxin
B,14 gambierol,15 and gambieric acid,16 C-ketosides emerged
as necessary targets. From the various possibilities, we opted
to pursue the same approach that had proven successful for
us in the generation of the corresponding C-glycosides,1,17,18
one involving a single flask enol ether oxidation/carbon-
carbon bond-forming sequence (Scheme 1).
transformations. Of interest to us was the influence of the
nucleophile and substitution about the anhydride on the
reaction. The results of these efforts are described here.
We initially studied the influence of C(3) silyl ether
substitution on the addition of C-nucleophiles to R-methyl
anhydrides. Surprisingly, the choice of silyl ether proved to
be critical; while C(3) TBDPS ether 5 gave 6 in 92% yield
with >95:5 diastereoselectivity when exposed to 2-methyl-
propenylmagnesium bromide (Table 1, entry 1), the use of
Table 1.
Scheme 1
Unfortunately, our early attempts to generate C-ketosides
from anhydrides were mostly unsuccessful. We were unable
to stereoselectively add any nucleophiles other than trimethyl
aluminum to R-substituted glycals.19 This changed for the
better during our gambierol work when we found that anhy-
dride 5 underwent a stereoselective coupling reaction with
2-methylpropenylmagnesium bromide, propenylmagnesium
chloride, and propargylmagnesium chloride to give â-C-keto-
sides 6, 7, and 8, respectively.20 Hopeful that 5 and related
substrates might enable us to finally solve the anhydride to
C-ketoside problem, we elected to examine the scope of these
the anhydride from the corresponding TBDMS ether 9 gave
C-ketoside 12 in 80% yield as a 2:1 mixture of isomers
(Table 2, entry 1). Similarly, the anhydride from 9 coupled
Table 2.
(10) (a) Turner, D.; Vogel, P. Synlett 1998, 31. (b) Carrel F.; Vogel, P.
Tetrahedron: Asymmetry 2000, 11, 4661.
(11) Wang, Q.; Wolff, M.; Polat, t.; Du, Y.; Linhardt, R. J. Bioorg. Med.
Chem. Lett. 2000, 10, 941.
(12) Notz, W.; Hartel, C.; Waldscheck, B.; Schmidt, R. R. J. Org. Chem.
2001, 66, 4250.
(13) Waldscheck, B.; Streiff, M.; Notz, W.; Kinzy, W.; Schmidt, R. R.
Angew. Chem., Int. Ed. 2001, 40, 4007.
(14) Prasad, A. V. K.; Shimizu, Y. J. Am. Chem. Soc. 1989, 111, 6476.
(15) (a) Satake, M.; Murata, M.; Yasumoto, T. J. Am. Chem. Soc. 1993,
115, 361. (b) Morohashi, A.; Satake, M.; Yasumoto, T. Tetrahedron Lett.
1998, 39, 97.
(16) (a) Nagai, H.; Murata, M.; Torigoe, K.; Satake, M.; Yasumoto, T.
J. Org. Chem. 1992, 57, 5448. (b) Morohashi, A.; Satake, M.; Nagai, H.;
Oshima, T.; Yasumoto, T. Tetrahedron 2000, 56, 8995.
(17) Rainier, J. D.; Allwein, S. P. J. Org. Chem. 1998, 63, 5310.
(18) (a) Bellosta, V.; Czernecki, S. J. Chem. Soc., Chem. Commun. 1989,
199. (b) Best, W. M.; Ferro, V.; Harle, J.; Stick, R. V.; Tilbrook, D. M. G.
Aust. J. Chem. 1997, 50, 463. (c) Evans, D. A.; Trotter, B. W.; Coleman,
P. J.; Coˆte´, B. Tetrahedron Lett. 1998, 39, 1709. (d) Evans, d. A.; Trotter,
B. W.; Coleman, P. J.; Coˆte´, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, A.
N. Tetrahedron 1999, 55, 8671. (e) Timmmers, C. M.; Dekker, M.;
Buijsman, R. C.; van der Marel, G. A.; Ethell, B.; Anderson, G.; Burchell,
B.; Mulder, G. J.; Van Boom J. H. Bioorg. Med. Chem. Lett. 1997, 7, 1501.
(f) Guo, J. S.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.;
Hayward, M. M.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 187.
(19) (a) Rainier, J. D.; Allwein, S. P.; Cox, J. M. J. Org. Chem. 2001,
66, 1380. (b) Rainier, J. D.; Allwein, S. P.; Cox, J. M. Org. Lett. 2000, 2, 231.
(20) Majumder, U. Cox, J. M.; Rainier, J. D. Org Lett. 2003, 5, 913.
with propenylmagnesium chloride to give 13 as a 4:1 mixture
of diastereomers in 56% yield (entry 2), while TBDPS ether
1142
Org. Lett., Vol. 7, No. 6, 2005