Journal of the American Chemical Society
Page 4 of 5
(4) (a) Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. Pd(II)-Catalyzed
iodides. Chem. Commun. 2017, 53, 12457-12460. (g) Zhuang, Z.; Yu, C.
B.; Chen, G.; Wu, Q. F.; Hsiao, Y.; Joe, C. L.; Qiao, J. X.; Poss, M. A.;
Yu, J.-Q. Ligand-Enabled β‑C(sp3)−H Olefination of Free Carboxylic
Acids. J. Am. Chem. Soc. 2018, 140, 10363-10367.
Hydroxyl-Directed C–H Olefination Enabled by Monoprotected Amino
Acid Ligands J. Am. Chem. Soc. 2010, 132, 5916-5921. (b) Lu, Y.; Leow,
D.; Wang, X.; Engle, K. M.; Yu, J.-Q. Hydroxyl-directed C–H carbonyla-
tion enabled by mono-N-protected amino acid ligands: An expedient route
to 1-isochromanones. Chem. Sci. 2011, 2, 967-971.
1
2
3
4
5
6
7
8
(15) For an example of Pd-catalyzed C(sp3)−H Olefination of alcohol
with activated olefins via radical mechanism, see: Chuentragool, P.;
Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan,
V. Aliphatic Radical Relay Heck Reaction at Unactivated C(sp3)−H Sites
of Alcohols. Angew. Chem. Int. Ed. 2019, 58, 1794-1798.
(5) For an example on ether directed benzylic C(sp3)–H functionaliza-
tion, see: CIglesias, Á.; Álvarez, R.; de Lera, Á. R.; Muñiz, K. Palladium-
Catalyzed Intermolecular C(sp3)–H Amidation. Angew. Chem. Int. Ed.
2012, 51, 2225-2228.
(16) Saini, V.; Stokes, B. J.; Sigman, M. S. Transition-Metal-Catalyzed
Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene.
Angew. Chem. Int. Ed. 2013, 52, 11206-11220.
(17) Mans, D. J.; Cox, G. A.; RajanBabu, T. V. Ethylene in Organic
Synthesis. Repetitive Hydrovinylation of Alkenes for Highly Enantiose-
lective Syntheses of Pseudopterosins. J. Am. Chem. Soc. 2011 133, 5776–
5779.
(6) (a) Ren, Z.; Mo, F.; Dong, G. Catalytic Functionalization of Unac-
tivated sp3 C−H Bonds via exo-Directing Groups: Synthesis of Chemically
Differentiated 1,2-Diols. J. Am. Chem. Soc. 2012, 134, 16991-16994. (b)
Xu, Y.; Yan, G.; Ren, Z.; Dong, G. Diverse sp3 C−H functionalization
through alcohol β-sulfonyloxylation. Nature. Chem. 2015, 7, 829-834. (c)
Jin, L.; Zeng, X.; Li, S.; Hong, X.; Qiu, G.; Liu, P. Palladium-catalyzed
intermolecular amination of unactivated C(sp3)–H bonds via a cleavable
directing group Chem. Commun. 2017, 53, 3986-3989. (d) Mao, Y. J.;
Lou, S. J.; Hao, H. Y.; Xu, D. Q. Selective C(sp3)−H and C(sp2)−H Fluor-
ination of Alcohols Using Practical Auxiliaries. Angew. Chem. Int. Ed.
2018, 57, 14085-14089.
(7) Xia, G.; Weng, J.; Liu, L.; Verma, P.; Li, Z.; Yu, J.-Q. Reversing
conventional site-selectivity in C(sp3)–H bond activation. Nature. Chem.
2019, 11, 571-577.
(8) (a) Park, H.; Chekshin, N.; Shen, P. X.; Yu, J.-Q. Ligand-Enabled,
Palladium-Catalyzed β-C(sp3)–H Arylation of Weinreb Amides. ACS
Catal 2018, 8, 9292-9297.
(9) Chen, G.; Gong, W.; Zhuang, Z.; Andrӓ, M. S.; Chen, Y.-Q.; Hong,
X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Ligand-accelerated enan-
tioselective methylene C(sp3)–H bond activation. Science 2016, 353,
1023-1027.
(10) Yang, Y. F.; Chen, G.; Hong, X.; Yu, J.-Q.; Houk, K. N. The Ori-
gins of Dramatic Differences in Five-Membered vs Six-Membered Chela-
tion of Pd(II) on Efficiency of C(sp3)−H Bond Activation. J. Am. Chem.
Soc. 2017, 139, 8514-8521.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) Yoshioka, K.; Goto, G.; Hiraga, K.; Miki, T. Total Synthesis of
13β-Allylgonanes. I. Synthesis of dl-17α-Ethynyl-17β-hydroxy-13β-
allylgon-4-en-3-one. Chem. Pharm. Bull. 1973, 21, 2427–2431.
(19) (a) Velluz, L.; Nominé, G.; Bucourt, R.; Plerdet, A.; Dufay, G.
Synthese stereospecifique totale d'un homologue angulaire de l'hormone
folliculinique naturelle. Le 13-propyl nor-estradiol. Tetrahedron Letters
1961, 3, 127–130. (b) Smith, H.; Hughes, G. A.; Douglas, G. H.; Wendt,
G. R.; Buzby, jun G. G.; Edgren, R. A.; Fisher, J.; Foell, T.; Gadsby, B.;
Hartley, D.; Herbst, D.; Jansen, A. B. A.; Ledig, K.; McLoughlin, B. J.;
McMenamin, J.; Pattison, T. W.; Phillips, P. C.; Rees, R.; Siddall, J.;
Siuda, J.; Smith, L. L.; Tokolics, J.; Watson, D. H. P. Totally synthetic
steroid hormones. Part II. 13β-Alkylgona-1,3,5(10)-trienes, 13β-alkygon-
4-en-3-ones, and related compounds. J. Chem. Soc. 1964, 4472-4492.
(20) For an example of alkylation of activated C(sp3)–H bond with eth-
ylene, see: Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.;
Murai, S. Ru3(CO)12-Catalyzed Coupling Reaction of sp3 C−H Bonds
Adjacent to a Nitrogen Atom in Alkylamines with Alkenes. J. Am. Chem.
Soc. 2001, 123, 10935-10941.
(11) (a) Yoo, E. J.; Wasa, M.; Yu, J.-Q. Pd(II)-Catalyzed Carbonylation
of C(sp3)−H Bonds: A New Entry to 1,4-Dicarbonyl Compounds. J. Am.
Chem. Soc. 2010, 132, 17378-17380. (b) Wang, P. L.; Li, Y.; Wu, Y.; Li,
C.; Lan, Q.; Wang, X. S. Pd-Catalyzed C(sp3)−H Carbonylation of Alkyl-
amines: A Powerful Route to γ‑Lactams and γ‑Amino Acids. Org. Lett.
2015, 17, 3698-3701. (c) Wang, C.; Zhang, L.; Chen, C.; Han, J.; Yao, Y.;
Zhao, Y. Oxalyl amide assisted palladium-catalyzed synthesis of pyrrol-
idones via carbonylation of γ-C(sp3)–H bonds of aliphatic amine sub-
strates Chem. Sci. 2015, 6, 4610-4614. (d) Png, Z. M.; Cabrera-Pardo, J.
R.; Peiro Cadahia, J.; Gaunt, M. J. Diastereoselective C–H carbonylative
annulation of aliphatic amines: a rapid route to functionalized γ-lactams.
Chem. Sci. 2018, 9, 7628-7633. (e) Hernando, E.; Villalva, J.; Martínez,
Á. M.; Alonso, I.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J. C.
Palladium-Catalyzed Carbonylative Cyclization of Amines via γ‑C(sp3)−H
Activation: Late-Stage Diversification of Amino Acids and Peptides. ACS
Catalysis 2016, 6, 6868-6882.
(12) For an example of C(sp2)–H alkoxycarbonylation, see: Wang, Y.;
Gevorgyan, V. Synthesis of Active Hexafluoroisopropyl Benzoates
through
a
Hydrogen-Bond-Enabled Palladium(II)-Catalyzed C–H
Alkoxycarbonylation Reaction. Angew. Chem. Int. Ed. 2017, 56, 3191-
3195.
(13) Pentafluorobenzoic acid may prevent the simultaneous binding of
two substrates to palladium center by protonating the pyridine, thereby
improving the yield.
(14) For selected examples on Pd-catalyzed C(sp3)–H olefination with
activated olefin, see: (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. Pd(II)-
Catalyzed Olefination of sp3 C−H Bonds. J. Am. Chem. Soc. 2010, 132,
3680-3681. (b) Stowers, K. J.; Fortner, K. C.; Sanford, M. S. Aerobic Pd-
Catalyzed sp3 C−H Olefination: A Route to Both N-Heterocyclic Scaf-
folds and Alkenes. J. Am. Chem. Soc. 2011, 133, 6541-6544. (c) He, J.; Li,
S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q.
Ligand-Controlled C(sp3)–H Arylation and Olefination in Synthesis of
Unnatural Chiral α–Amino Acids. Science 2014, 343, 1216-1220. (d) Li,
S.; Chen, G.; Feng, C. G.; Gong, W.; Yu, J.-Q. Ligand-Enabled γ‑C−H
Olefination and Carbonylation: Construction of β‑Quaternary Carbon
Centers. J. Am. Chem. Soc. 2014, 136, 5267-5270. (e) Jiang, H.; He, J.;
Liu, T.; Yu, J.-Q. Ligand-Enabled γ‑C(sp3)−H Olefination of Amines: En
Route to Pyrrolidines. J. Am. Chem. Soc. 2016, 138, 2055-2059. (f) Thri-
murtulu, N.; Khan, S.; Maity, S.; Volla, C. M. R.; Maiti, D. Palladium
catalyzed direct aliphatic γC(sp3)–H alkenylation with alkenes and alkenyl
ACS Paragon Plus Environment