the catalyst. The reaction products were analyzed by GC. All
values are the average of at least 2 runs.
26 C. Kim, K. Chen, J. Kim and L. Que, Jr., J. Am. Chem. Soc., 1997,
119, 5964.
27 K. Chen and L. Que, Jr., J. Am. Chem. Soc., 2001, 123, 6327.
28 T. J. Collins, Acc. Chem. Res., 1994, 27, 279.
29 G. V. Nizova, C. Bolm, S. Ceccarelli, C. Pavan and G. B. Shul’pin,
Adv. Synth. Catal., 2002, 344, 899.
Crystallographic details
Table 7 provides a summary of the crystallographic data for
compounds [Fe(1)(OTf)2], [Fe(1)(OTf)(CH3CN)]SbF6, [Fe(2)-
(CH3CN)3](SbF6)2, [Ru(2)(CH3CN)3](SbF6)2 and [Mn(2)(OTf)2-
(H2O)]. Data were collected on Bruker P4 diffractometers, and
the structures were refined based on F2 using the SHELXTL
program system.74 The absolute structures of [Fe(1)(OTf)2]
and [Fe(2)(CH3CN)3](SbF6)2 were determined by a combina-
tion of R-factor tests and use of the Flack parameter [for
30 C. A. Tolman, J. D. Druliner, P. J. Krusic, M. J. Nappa, W. C. Seidel,
I. D. Williams and S. D. Ittel, J. Mol. Catal., 1988, 48, 129.
31 L. Saussine, E. Brazi, A. Robine, H. Mimoun, J. Fischer and R.
Weiss, J. Am. Chem. Soc., 1985, 107, 3534.
32 T. Naota, H. Takaya and S.-I. Murahashi, Chem. Rev., 1998, 98,
2599.
33 T. J. Meyer, J. Electrochem. Soc., 1984, 131, 221C.
34 L. Roecker, W. Kutner, J. A. Gilbert, M. Simmons, R. W. Murray
and T. J. Meyer, Inorg. Chem., 1985, 24, 3784.
35 J. C. Dobson and T. J. Meyer, Inorg. Chem., 1988, 27, 3283.
36 T.-C. Lau, C.-M. Che, W.-O. Lee and C.-K. Poon, J. Chem. Soc.,
Chem. Commun., 1988, 1406.
[Fe(1)(OTf)2], R1 = 0.0492, R1 = 0.0506, x+ = −0.09(8); for
+
−
[Fe(2)(CH3CN)3](SbF6)2, R1 = 0.0394, R1 = 0.0411, x+
=
+
−
+0.06(6), x− = +0.94(6)].
37 C.-M. Che, K.-W. Cheng, M. C. W. Chan, T.-C. Lau and C.-K. Mak,
J. Org. Chem., 2000, 65, 7996.
38 A. S. Goldstein and R. S. Drago, J. Chem. Soc., Chem. Commun.,
1991, 21.
CCDC reference numbers 246556–246560. See http://www.
rsc.org/suppdata/dt/b4/b414813d/ for crystallographic data
in CIF or other electronic format.
39 A. S. Goldstein, R. H. Beer and R. S. Drago, J. Am. Chem. Soc.,
1994, 116, 2424.
Acknowledgements
40 T. Kojima, H. Matsuo and Y. Matsuda, Inorg. Chim. Acta, 2000,
300–302, 661.
We are grateful to EPSRC and BP Chemicals Ltd. for financial
support. Dr Glenn Sunley and Dr Marco Boesveld are thanked
for helpful discussions. We thank Prof. Vernon Gibson for
allowing the use of unpublished results by S. K. S. and Mr.
Richard Sheppard for NMR measurements. We also thank
Johnson Matthey for a loan of RuCl3.
41 N. Kitajima, J. Chem. Soc. Chem. Commun., 1988, 485.
42 X. Wang, S. Wang, L. Li, E. B. Sundberg and G. P. Gacho, Inorg.
Chem., 2003, 42, 7799.
43 M. Klopstra, R. Hage, R. M. Kellogg and B. L. Feringa, Tetrahedron
Lett., 2003, 44, 4581.
44 G. B. Shul’pin, G. V. Nizova, Y. N. Kozlov, L. Gonzalez Cuervo and
G. Su¨ss-Fink, Adv. Synth. Catal., 2004, 346, 317.
45 G. J. P. Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J.
Maddox, S. Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan,
S. Stro¨mberg, A. J. P. White and D. J. Williams, J. Am. Chem. Soc.,
1999, 121, 8728.
46 G. J. P. Britovsek, V. C. Gibson, S. Mastroianni, D. C. H. Oakes, C.
Redshaw, G. A. Solan, A. J. P. White and D. J. Williams, Eur. J. Inorg.
Chem., 2001, 431.
47 A. N. Vedernikov, P. Wu, J. C. Huffman and K. G. Caulton, Inorg.
Chim. Acta, 2002, 330, 103.
48 G. J. P. Britovsek, V. C. Gibson, S. K. Spitzmesser, K. P. Tellmann,
A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 2002,
1159.
49 G. J. P. Britovsek, S. Mastroianni, G. A. Solan, S. P. D. Baugh, C.
Redshaw, V. C. Gibson, A. J. P. White, D. J. Williams and M. R. J.
Elsegood, Chem. Eur. J., 2000, 6, 2221.
50 F. Lions and K. V. Martin, J. Am. Chem. Soc., 1957, 79, 2733.
51 M. S. Brookhart and B. L. Small, (DuPont/UNC), Int. Pat., WO
98/30612, 1998 (Chem. Abstr., 1998, 129, 149375r).
52 B. de Bruin, E. Bill, E. Bothe, T. Weyhermu¨ller and K. Wieghardt,
Inorg. Chem., 2000, 39, 2936.
References
1 H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman,
A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen,
D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard,
D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E.
Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. A. Periana,
L. Que, Jr., J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A.
Sen, G. A. Somorjai, P. C. Stair, B. R. Stults and W. Tumas, Chem.
Rev., 2001, 101, 953.
2 J.-P. Lange, Ind. Eng. Chem. Res., 1997, 36, 4282.
3 J. A. Labinger, J. Mol. Catal., 2004, 220, 27.
4 R. A. Sheldon and J. K. Kochi, Metal-Catalysed Oxidations of
Organic Compounds, Academic Press, New York, 1981.
5 B. Meunier, Biomimetic Oxidations Catalysed by Transition Metal
Complexes, Imperial College Press, London, 2000.
6 A. E. Shilov and G. B. Shul’pin, Activation and Catalytic Reactions of
Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer,
Dordrecht, 2000.
7 K. U. Ingold, Aldrichim. Acta, 1989, 22, 69.
53 W. M. Reiff, N. E. Erickson and W. A. Baker, Inorg. Chem., 1969, 8,
2019.
8 W. Partenheimer, Catal. Today, 1995, 23, 69.
9 H. J. H. Fenton, J. Chem. Soc., 1894, 65, 899.
10 F. Haber and J. Weiss, Proc. R. Soc. London, Ser. A, 1934, 147, 332.
11 C. Walling, Acc. Chem. Res., 1975, 8, 125.
54 M. W. Day, B. D. Ward and R. H. Grubbs (CCDC 133691, 2001).
55 B. C¸ etinkaya, E. C¸ etinkaya, M. Brookhart and P. S. White, J. Mol.
Catal., 1999, 142, 101.
12 F. Buda, B. Ensing, M. C. M. Gribnau and E. J. Baerends, Chem.
Eur. J., 2001, 7, 2775.
56 R. S. Drago, Physical Methods for Chemists, Saunders College,
London, 1992.
13 H.-C. Tung, C. Kang and D. T. Sawyer, J. Am. Chem. Soc., 1992,
114, 3445.
57 W. Peters, M. Fuchs, H. Sicius and W. Kuchen, Angew. Chem., Int.
Ed., 1985, 24, 231.
58 S. Braun, H.-O. Kalinowski and S. Berger, 150 and More Basic NMR
Experiments, Wiley-VCH, Weinheim, 1998.
59 R. E. Noftle and G. H. Cady, Inorg. Chem., 1965, 4, 1010.
60 D. W. Blakesley, S. C. Payne and K. S. Hagen, Inorg. Chem., 2000,
39, 1979.
14 F. Gozzo, J. Mol. Catal., 2001, 171, 1.
15 C. Limberg, Angew. Chem., Int. Ed., 2003, 42, 5932.
16 M. J. Perkins, Chem. Soc. Rev., 1996, 229.
17 M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Jr., Chem. Rev.,
2004, 104, 939.
18 M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev.,
1996, 96, 2841.
19 B. Meunier, Chem. Rev., 1992, 92, 1411.
61 H. Bo¨rzel, P. Comba, K. S. Hagen, Y. D. Lampeka, A. Lienke, G.
Linti, M. Merz, H. Pritzkow and L. V. Tsymbal, Inorg. Chim. Acta,
2002, 337, 407.
20 W. C. Bray and M. H. Gorin, J. Am. Chem. Soc., 1932, 54, 2124.
21 J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski,
A. Stubna, E. Mu¨nck, W. Nam and L. Que, Jr., Science, 2003, 299,
1037.
62 D. Reardon, G. Aharonian, S. Gambarotta and G. P. A. Yap,
Organometallics, 2002, 21, 786.
63 D. A. Edwards, M. F. Mahon, W. R. Martin, K. C. Molloy, P. E.
Fanwick and R. A. Walton, J. Chem. Soc., Dalton Trans., 1990,
3161.
64 T. M. Kooistra, K. F. W. Hekking, Q. Knijnenburg, B. de Bruin,
P. H. M. Budzelaar, R. de Gelder, J. M. M. Smits and A. W. Gal,
Eur. J. Inorg. Chem., 2003, 648.
22 M. Costas, K. Chen and L. Que, Jr., Coord. Chem. Rev., 2000, 200–
202, 517.
23 J. Kim, R. G. Harrison, C. Kim and L. Que, Jr., J. Am. Chem. Soc.,
1996, 118, 4373.
24 K. Chen and L. Que, Jr., Chem. Commun., 1999, 1375.
25 G. Roelfes, M. Lubben, R. Hage, L. Que, Jr. and B. L. Feringa, Chem.
Eur. J., 2000, 6, 2152.
65 V. C. Gibson, S. J. McTavish, C. Redshaw, G. A. Solan, A. J. P. White
and D. J. Williams, J. Chem. Soc., Dalton Trans., 2003, 221.
66 M. Fujita and L. Que, Jr., Adv. Synth. Catal., 2004, 346, 190.
9 5 4
D a l t o n T r a n s . , 2 0 0 5 , 9 4 5 – 9 5 5