Regioselectivity of the Addition of O2
Organometallics, Vol. 24, No. 7, 2005 1613
and the solution was stirred for 30 min. After removing the
solvent, the solid was washed first with hexanes (3 × 2 mL)
then with ether (3 × 2 mL). The resulting solid was dissolved
in CH2Cl2 and filtrated through Celite. After drying, 5 was
recovered as an orange solid. Yield: 126 mg (86%). Anal. (%)
calcd for C50H46IrP3S2: C 60.28, H 4.65. Found: C 59.92, H
also optimized at the ONIOM(B3PW91/UFF) level,20 where the
QM part was treated within the framework of density func-
tional theory at the B3PW91 and the UFF force field21 was
used for the molecular mechanics calculations (phenyl groups).
In this QM/MM calculation, the basis set for the QM part is
the same as that described above.
X-ray Crystallographic Study. A crystal of compound 10
suitable for X-ray diffraction deposited from a THF solution.
Data were collected at 150.0(1) K on a Nonius Kappa CCD
diffractometer using a Mo KR (λ ) 0.71070 Å) X-ray source
and a graphite monochromator. All data were measured using
phi and omega scans. Experimental details are described in
Table 3. The crystal structures were solved using SIR 9722 and
SHELXL-97.23 ORTEP drawings were made using ORTEP III
for Windows.24 CCDC-262573 contains the supplementary
crystallographic data for this paper. These data can be
ing.html [or from the Cambridge Crystallographic Data Cen-
tre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.)
+44-1223/336-033; e-mail: deposit@ccdc.cam.ac.uk].
2
4.17. 31P (CDCl3): δ 7.86 (t, J(PA-PB) ) 112.4, PAMe), 47.84
2
1
2
(d, J(PA-PB) ) 112.4, PBPh2). H (CDCl3): δ 1.29 (d, J(H-
PA) ) 8.4, 3H, CH3), 1.51 (s, 8H, CH2 of COD), 3.32 (s, 4H, CH
of COD), 5.53 (t, 4J(H-PB) ) 4.2, 1H, H4), 6.67-8.05 (m, 30H,
CH of Ph). 13C (CDCl3): δ 5.7 (s, J(C-PA) ) 40.2, CH3), 32.9
1
(s, CH2), 62.0 (d, 2J(C-PA) ) 6.3, CH of COD), 72.3 (dd, 1J(C-
P) ) 95.9, 1J(C-P) ) 39.3, C2,6), 117.1 (v q, 4J(C-PA) ) 4J(C-
PB) ) 10.7, C4H), 127.4-133.1 (m, CH of Ph), 134.4 (s, C of
Ph), 135.7 (s, C of Ph), 143.3 (br s, C3,5), 153.5 (br s, C of Ph).
Synthesis of Complex 7. A solution of MeLi in Et2O (95
µL, C ) 1.6 M, 0.15 mmol) was syringed into a solution of 1
(100 mg, 0.15 mmol) in THF (5 mL) at -78 °C. The solution
was warmed to room temperature and stirred for 20 min.
Complete formation of 2 is checked by 31P NMR (THF): δ 44.83
(d, 2J(P-P) ) 156.7, PPh2), -66.52 (t, 2J(P-P) ) 156.7, PMe).
In the glovebox, [Ir(COE)2Cl]2 (63 mg, 0.8 mmol) and PPh3 (40
mg, 15 mmol) were added, and the solution was stirred for 2
h. 7 was too sensitive to be dried or give satisfactory elemental
data. Yield: 100%. 31P (THF-d8): δ 19.8 (td, 2J(PC-PA) ) 370.2,
2J(PB-PA) ) 128.1, PAMe), 30.9 (td, 2J(PA-PC) ) 370.2, 3J(PB-
PC) ) 37.9, PCPh3), 37.7 (dd, 2J(PB-PA) ) 128.1, 3J(PB-PC) )
37.9, PBPh2).
Acknowledgment. The authors thank the CNRS,
the DGA, and the Ecole Polytechnique for supporting
this work and IDRIS (Orsay, Paris XI) for the allowance
of computer time.
Supporting Information Available: Optimized geometry
of [M(SPS)(PH3)] (M ) Rh, Ir) and I-IV(a,b). This material
Synthesis of Complex 8. A solution of MeLi in Et2O (95
µL, C ) 1.6 M, 0.15 mmol) was syringed into a solution of 1
(100 mg, 0.15 mmol) in THF (5 mL) at -78 °C. The solution
was warmed to room temperature and stirred for 20 min.
Complete formation of 2 is checked by 31P NMR. In the
glovebox, [Ir(COE)2Cl]2 (63 mg, 0.8 mmol) was added and the
solution was stirred for 5 min. 8 decomposed within 30 min
in THF; no NMR signal is then observed. 31P (THF): δ 13.9
(t, 2J(PA-PB) ) 114.2, PAMe), 33.6 (d, 2J(PB-PA) ) 114.2,
PBPh2).
OM049198C
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; J. A. Montgomery, J.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone,
V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene,
M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma,
K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.;
Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.;
Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challa-
combe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
Gonzalez, C.; Pople, J. A. GAUSSIAN 03, Revision B.04; Gaussian,
Inc.: Pittsburgh, PA, 2003.
Synthesis of Complex 9. A solution of 5 (0.15 mmol) in
THF (5 mL) was stirred under an O2 atmosphere (1 atm) for
2 h, and an orange solid precipitated. The solid was filtered
off and washed with THF (5 mL) and hexane (5 mL). 9 was
recovered as an orange solid. Crystals of compound 9 suitable
for X-ray diffraction deposited from a THF solution. Yield: 145
mg (82%). Anal. (%) Calcd for C60H49IrO2P4S2: C 60.95, H 4.18.
2
Found: C 60.53, H 3.91. 31P (CD2Cl2): δ 4.9 (td, J(PC-PA) )
428.5, 3J(PC-PB) ) 24.2, PCPh3), 17.7 (td, 2J(PA-PC) ) 428.5,
2J(PA-PB) ) 100.1, PAMe), 50.2 (dd, 2J(PB-PA) ) 100.1, 3J(PB-
(15) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and
Molecules; Oxford University Press: Oxford, U.K., 1989. Ziegler, T.
Chem. Rev. 1991, 91, 651.
1
2
PC) ) 24.2, PBPh2). H (CD2Cl2): δ 1.32 (dd, J(H-P) ) 11.3,
4J(H-P) ) 1.9, 3H, CH3), 5.77 (t, 4J(H-PB) ) 4.4, 1H, H4),
6.87-8.07 (m, 45H, H of Ph). 13C (CD2Cl2): δ 1.0 (m, CH3),
69.5 (m, C2,6), 116.2 (t, 3J(C-PB) ) 11.8, C4), 126.4-133.8 (m,
CH and C of Ph), 141.7 (∑ J ) 10.6, C3,5), 153.5 (bs, C of Ph).
Computational Details. Calculations were performed with
the GAUSSIAN 03 series of programs14 on the model systems
[M(SPS)(PH3)] and [M(SPS)(PH3)(O2)] (M ) Rh, Ir) with the
phenyl groups replaced by H atoms. Density functional theory
(DFT)15 was applied with the B3PW91 functional.16 A qua-
sirelativistic effective core potential operator was used to
represent the 28 innermost electrons of the rhodium atom and
the 60 innermost electrons of the iridium atom.17 The basis
set for the metal was that associated with the pseudopoten-
tial,17 with a standard double-ú LANL2DZ contraction17 com-
pleted by a set of f-polarization functions.18 The 6-31+G* basis
set was used for O, P, and S atoms, 6-31G* for C atoms, and
6-31G for H atoms.19 The minimum energy structures were
characterized by full vibration frequencies calculations. The
fully substituted square-planar complex [Rh(SPS)(PPh3)] was
(16) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(17) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(18) Ehlers, A.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.;
Jonas, V.; Kohler, K.; Stegmenn, R.; Veldkamp, A.; Frenking, G. Chem.
Phys. Lett. 1993, 208, 111.
(19) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972,
56, 2257. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973,
28, 213. (c) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.;
Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77,
3654. (d) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P.
v. R. J. Comput. Chem. 1983, 4, 294.
(20) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.;
Sieber, S.; Morokuma, K. J. J. Phys. Chem. 1996, 100, 19357.
(21) Rappe´, A. K.; Casewitt, C. J.; Colwell, K. S.; Goddard, W. A.;
Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
(22) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giaco-
vazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R.
SIR97, an integrated package of computer programs for the solution
and refinement of crystal structures using single-crystal data; Institute
of Crystallography, Bari, Italy, 1988.
(23) Sheldrick, G. M. SHELXL-97; Universita¨t Go¨ttingen: Go¨ttin-
gen, Germany, 1997.
(24) Farrugia, L. J. ORTEP-3; Department of Chemistry, University
of Glasgow, Glasgow, Scotland, 2003.