534
G. C. Tron, J. Zhu
LETTER
(11) (a) Janvier, P.; Sun, X.; Bienaymé, H.; Zhu, J. J. Am. Chem.
Soc. 2002, 124, 2560. (b) For the synthesis of
Acknowledgment
Dr. Gian Cesare Tron is a visiting Professor from Università del
Piemonte Orientale – Facoltà di Farmacia, Novara, Italy. Financial
supports from Università del Piemonte Orientale and CNRS are
gratefully acknowledged.
isocyanoacetamide, see: Fayol, A.; Housseman, C.; Sun, X.;
Janvier, P.; Bienaymé, H.; Zhu, J. Synthesis 2005, 161.
(12) The role of molecular sieve is unknown. It may remove
adventitious water or act as a scavenger of HCl produced in
situ. It is worthy of note that the same reaction did not occur
in the presence of triethylamine.
References
(13) Typical Procedure for the Synthesis of 4.
To a solution of isoquinoline (1, 97.0 mL, 105.7 mg, 0.82
mmol) in dry CH2Cl2 (2.0 mL) at –40 °C were added
powdered molecular sieves (4 Å, 200 mg) and methyl
chloroformate (2, 155.0 mg, 126.7 mL, 1.64 mmol,)
successively. The resulting yellow solution was stirred for 5
min and a solution of a-isocyano b-phenyl propionamide (3,
200.0 mg, 0.82 mmol) in dry CH2Cl2 (3.0 mL) was added
drop-wise. After being stirred for 1.5 h, the reaction was
quenched by addition of sat. aq NaHCO3 solution and
extracted with CH2Cl2. The combined organic extracts were
washed with HCl (2 N), sat. aq NH4Cl solution, dried over
Na2SO4, and the volatile was evaporated under reduced
pressure. The crude product was purified by flash
chromatography (heptane–EtOAc = 6:4) to give 4 as a
yellowish solid (263.0 mg, 76%): mp 110–112 °C. IR: 1713,
1633, 1440, 1347, 1235, 1113, 970 cm–1. 1H NMR (300
MHz, CDCl3): two rotamers, d = 7.27–7.06 (9 H, m), 6.95,
6.91 (1 H, d, J = 7.7 Hz), 6.41, 6.29 (1 H, br s), 5.82 (1 H, d,
J = 7.7), 5.75 (1 H, d, J = 7.7), 3.75, 3.71 (2 H, s), 3.66 (3 H,
s), 3.53 (4 H, m), 2.74 (4 H, m). MS (ESI): m/z (%) = 454
(100) [M + Na+].
(14) (a) Ruchirawat, S.; Phadungkul, N.; Chuankamnerdkarn,
M.; Thebtaranonth, C. Heterocycles 1977, 6, 43. (b)Duarte,
F. F.; Popp, F. D. J. Heterocycl. Chem. 1991, 28, 1801.
(15) Marcaccini, S.; Torroba, T. Post-Condensation Modification
of the Passerini and Ugi Reactions, In Multicomponent
Reactions; Zhu, J.; Bienaymé, H., Eds.; Wiley-VCH:
Weinheim, 2005, 33.
(16) Clerin, D.; Kille, G.; Fleury, J. P. Tetrahedron 1974, 30, 469.
(17) Zhao, G.; Sun, X.; Bienaymé, H.; Zhu, J. J. Am. Chem. Soc.
2001, 123, 6700.
(1) Bentley, K. W. Nat. Prod. Rep. 2003, 20, 342; and
references cited therein.
(2) For reviews, see: (a) Comins, D. L.; Sajan, P. J. Pyridines
and their Benzo Derivatives: Reactivity at the Ring, In
Comprehensive Heterocyclic Chemistry II, Vol 5; Katrizky,
A. P.; Rees, V. W.; Scriven, E. F., Eds.; Pergamon: Oxford,
1996, 37. (b) Ahmad, N. M.; Li, J. J. Palladium in Quinoline
Synthesis, In Advances in Heterocyclic Chemistry, Vol 84;
Katrizky, A. P., Ed.; Academic Press: New York, 2003, 1;
and references cited therein.
(3) For synthetic applications of Reissert reaction see:
(a) Scriven, E. F. In Comprehensive Heterocyclic Chemistry,
Vol. 2; Katritzky A. R., Rees C. W.: Pergamon Press:
Oxford, 1984, 165. (b) Blaskó, G.; Kerekes, P.; Makleit, S.
Reissert Synthesis of Isoquinoline and Indole Alkaloids, In
The Alkaloids, Vol. 31; Brossi, A., Ed.; Academic Press:
London, 1987, 1. (c) For a recent asymmetric version of
Reissert reaction, see: Takamura, M.; Funabashi, K.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 6327.
(4) For recent reviews on multicomponent reactions, see:
(a) Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P.
Chem.–Eur. J. 2000, 6, 3321. (b) Dömling, A. Curr. Opin.
Chem. Biol. 2002, 6, 306. (c) Hulme, C.; Gore, V. Curr.
Med. Chem. 2003, 10, 51. (d) Orru, R. V. A.; De Greef, M.
Synthesis 2003, 1471. (e) Balme, G.; Bossharth, E.;
Monteiro, N. Eur. J. Org. Chem. 2003, 4101. (f) Jacobi von
Wangelin, A.; Neumann, H.; Gördes, D.; Klaus, S.;
Strübing, D.; Beller, M. Chem.–Eur. J. 2003, 9, 4286.
(g) Murakami, M. Angew. Chem. Int. Ed. 2003, 42, 718.
(h) Zhu, J. Eur. J. Org. Chem. 2003, 1133. (i) Simon, C.;
Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004,
4957.
(5) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168.
(6) (a) Díaz, J. L.; Miguel, M.; Lavilla, R. J. Org. Chem. 2004,
69, 3550. (b) For related work from the same group, see:
Lavilla, R.; Bernabeu, M. C.; Carranco, I.; Díaz, J. L. Org.
Lett. 2003, 5, 717. (c) Masdeu, C.; Díaz, J. L.; Miguel, M.;
Jiménez, O.; Lavilla, R. Tetrahedron Lett. 2004, 45, 7907;
and references cited therein.
(7) Reaction of N-alkylquinolinium salt with isocyanide, see:
Ugi, I.; Böttner, E. Ann. 1963, 670, 74.
(8) Mironov, M. A.; Mokrushin, V. S.; Maltsev, S. S. Synlett
2003, 943.
(18) For reviews on the chemistry of oxazoles see: (a) Hassner,
A.; Fischer, B. Heterocycles 1993, 35, 1441. (b) Jacobi, P.
A. Advances in Heterocyclic Natural Product Synthesis, Vol
2; Pearson, W. H., Ed.; Jai Press Inc.: Greenwich, 1992, 251.
(19) For recent applications in natural product syntheses, see:
(a) Liu, B.; Padwa, A. Tetrahedron Lett. 1999, 40, 1645.
(b) Jacobi, P. A.; Lee, K. J. Am. Chem. Soc. 2000, 122,
4295. (c) Paquette, L. A.; Efremov, I. J. Am. Chem. Soc.
2001, 123, 4492. (d) Ohba, M.; Natsutani, I.; Sakuma, T.
Tetrahedron Lett. 2004, 45, 6471; and references cited
therein.
(20) (a) Fayol, A.; Zhu, J. Angew. Chem. Int. Ed. 2002, 41, 3633.
(b) Janvier, P.; Bienaymé, H.; Zhu, J. Angew. Chem. Int. Ed.
2002, 41, 4291. (c) Fayol, A.; Zhu, J. Org. Lett. 2004, 6,
115.
(9) Marchand, E.; Morel, G. Tetrahedron Lett. 1993, 34, 2319.
(10) Reaction of pyridinium triflate with isonitrile, see: Berthet,
J.-C.; Nierlich, M.; Ephritikhine, M. Eur. J. Org. Chem.
2002, 375.
(21) Lee, J. C.; Cha, J. K. J. Am. Chem. Soc. 2001, 123, 3243.
Synlett 2005, No. 3, 532–534 © Thieme Stuttgart · New York