D. C. Lankin, J. P. Snyder et al.
CCDC-247306–CCDC-247309 contain the supplementary crystallograph-
ic data for compounds 11, 12, 14 and 17, respectively, in this paper. These
ving.html (or from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223–336–033; or e-
mail: deposit@ccdc.cam.ac.uk).
[14] A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
À
[15] The C C bond lengths in cyclohexane by electron diffraction are
1.536 ꢁ,[16] while a combined ED and microwave study for piperi-
[17]
À
dine found the C N bond separations to be 1.472 ꢁ.
[16] O. Bastiansen, L. Fernholt, H. M. Seip, H. Kambara, K. Kuchitsu, J.
Mol. Struct. 1973, 18, 163–168, and references therein.
[17] G. Gunderson, D. W. H. Rankin, Acta Chem. Scand. Ser. A 1983, 37,
865–874.
Computational aspects Molecular mechanics calculations were carried
out with MacroModel 6.5.[44] Ab initio and DFT calculations were per-
formed with the Gaussian 98 series of programs.[45] All structures were
geometry-optimized either with the solvent-enhanced MMFF/GBSA/
H2O force field (MacroModel 6.5), the DFT method Becke3LYP/6–
311G(d,p) or the latter coupled to the Tomasi continuum solvation
model for water[18] (PCM), that is, Becke3LYP/6–311G(d,p)/PCM.
Single-point calculations were performed at three levels of theory: Beck-
e3LYP/6 31G*//MMFF/GBSA/H2O, Becke3LYP/6–311G(d,p)//MMFF/
GBSA/H2O, or MP2/6–311G(d,p)/PCM//Becke3LYP/6–311G(d,p)/PCM.
The HF/6–31G* electrostatic surfaces of Figure 4 and Figure 5 were gen-
erated within Spartan 02[46] from the MMFF-optimized structures. Con-
former populations were calculated by using a Boltzmann distribution at
298 K (or other temperature when specified). Unit cell analysis leading
to Figure 6 and Figure 7 were performed with CCDꢂs Mercury pro-
gram.[47]
[18] a) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117–129;
b) M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett.
1996, 255, 327–335; c) M. T. Cances, V. Mennucci, J. Tomasi, J.
Chem. Phys. 1997, 107, 3032–3041; d) V. Barone, M. Cossi, J.
Tomasi, J. Chem. Phys. 1997, 107, 3210–3221; e) V. Barone, M.
Cossi, J. Tomasi, J. Comput. Chem. 1998, 19, 404–417; as imple-
mented in Gaussian 98.[46]
[19] a) T. A. Halgren, J. Comput. Chem. 1996, 17, 490–519; b) T. A.
Halgren, J. Comput. Chem. 1996, 17, 616–641; c) T. A. Halgren,
R. B. Nachbar, J. Comput. Chem. 1996, 17, 587–615; d) T. A. Halg-
ren, J. Comput. Chem. 1999, 20, 730–748.
[20] M. B. van Niel, I. Collins, M. S. Beer, H. B. Broughton, S. K. F.
Cheng, S. C. Goodacre, A. Heald, K. L. Locker, A. M. MacLeod, D.
Morrison, C. R. Moyes, D. OꢂConnor, A. Pike, M. Rowley, M. G. N.
Russell, B. Sohal, J. A. Stanton, S. Thomas, H. Verrier, A. P. Watt,
J. L. Castro, J. Med. Chem. 1999, 42, 2087–2104.
[21] D. A. Klumpp, M. Garza, A. Jones, S. Mendoza, J. Org. Chem. 1999,
64, 6702–6705.
[22] J. B. Lambert, H. F. Shurvell, D. A. Lightner, R. G. Cooks, Organic
Structural Spectroscopy, Prentice Hall, New Jersey, 1998, pp. 47–48.
[23] a) H. L. Holland, Tetrahedron Lett. 1978, 19, 881–882; b) J. T.
Nelson, L. J. Kurz, Magn. Reson. Chem. 1993, 31, 203–213.
[24] J.-P. Berthelot, J.-C. Jacquesy, J. Levisalles, Bull. Soc. Chim. Fr. 1971,
1896–1902.
Acknowledgements
A.S. and J.P.S. are grateful to Professor Dennis Liotta (Emory Universi-
ty) for generous encouragement and support. We are also appreciative to
the NIH for providing support for an X-ray diffractometer (NIH S10-
RR13673).
[25] C. Thibaudeau, J. Plavec, J. Chattopadhyaya, J. Org. Chem. 1998, 63,
4967–4984.
[26] S. M. Bachrach in Reviews in Computational Chemistry, Vol.5
(Eds.: K. B. Lipkowitz, D. B. Boyd), Wiley-VCH, New York, 1994,
pp. 171–268.
[27] The charges that correspond to the electrostatic potential surfaces
(ESP) of Figure 5 and S5 are somewhat different from Natural/NBO
and Mulliken charges. Specifically, negative charge on nitrogen is re-
[1] E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds,
Wiley, New York, 1994.
[2] F.-A. Kang, C.-L. Yin, J. Am. Chem. Soc. 1997, 119, 8562–8563.
[3] a) F. A. L. Anet, J. Krane, W. Kitching, D. Doddrell, D. Praeger, Tet-
rahedron Lett. 1974, 15, 3255–3258; b) P. F. Barron, D. Doddrell, W.
J. Kitching, J. Organomet. Chem. 1977, 6, 361–383; c) K. Kwetkat,
W. J. Kitching, J. Chem. Soc. Chem. Commun. 1994, 345–347.
[4] a) B. Cornett, M. Davis, S. Wu, N. Nevins, J. P. Snyder, J. Am. Chem.
Soc. 1998, 120, 12145–12146; b) M. C. Davis, B. Cornett, S. Wu, J. P.
Snyder, J. Am. Chem. Soc. 1999, 121, 11864–11870.
[5] E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds,
Wiley, New York, 1994, pp. 686–726, 740–754.
[6] Conformational Behavior of Six-Membered Rings, (Ed.: E. Juaristi),
VCH Publishers, 1995.
À
distributed to hydrogen atoms on C H bonds, leading to a positive
charge at nitrogen for 2a and 26. Thus, the figures illustrate a posi-
tive charge distribution (“blue”) in the vicinity nitrogen. Nonethe-
less, the ESP charges at F and the spatially closest methyl groups
are very similar to the NBO and Mulliken charges: 2a (C)H–-F, +
0.22 (H) and À0.32 (F); 26 (C)H–-F, +0.09, +0.16 (H) and À0.31,
À0.32 (F). Consequently, in the two figures, the green-red interface
corresponds to the (N)H–-F(C) interactions.
[28] a) R. D. Stolow, T. W. Giants, J. D. Roberts, Tetrahedron Lett. 1968,
9, 5777–5780; b) R. D. Stolow, T. Groom, P. D. McMaster, Tetrahe-
dron Lett. 1968, 9, 5781–5784.
[29] Y. Terui, K. Tori, J. Chem. Soc. Perkin Trans. 2 1973, 127–133.
[30] R. J. Abraham, C. J. Medforth, P. E. Smith, J. Comput.-Aided Molec.
Des. 1991, 5, 205–212.
[7] D. C. Lankin, N. S. Chandrakumar, S. N. Rao, D. P. Spangler, J. P.
Snyder, J. Am. Chem. Soc. 1993, 115, 3356–3357.
[8] J. P. Snyder, N. S. Chandrakumar, H. Sato, D. C. Lankin, J. Am.
Chem. Soc. 2000, 122, 544–545.
[9] D. C. Lankin, G. L. Grunewald, F. A. Romero, I. Y. Oren, J. P.
Snyder, Org. Lett. 2002, 4, 3557–3560.
[31] a) E. L. Eliel, H. D. Banks, J. Am. Chem. Soc. 1972, 94, 171–176;
b) E. L. Eliel, H. D. Banks, J. Am. Chem. Soc. 1972, 94, 8587–8589;
c) E. L. Eliel, F. Alcudia, J. Am. Chem. Soc. 1974, 96, 1939–1941.
[32] a) Biomedical Aspects of Fluorine Chemistry, (Eds.: R. Filler, Y. Ko-
bayasi), Elsevier, New York, 1982; b) Biomedical Frontiers of Fluo-
rine Chemistry, (Eds.: I. Ojima, J. R. McCarthy, J. T. Welch), ACS
Symposium Series No. 639, Washington D. C., 1996; c) D. OꢂHagan,
H. S. Rzepa, Chem. Commun. 1997, 645–652; d) B. K. Park, N. R.
Kitteringham, P. M. OꢂNeill, Annu. Rev. Pharmacol. Toxicol. 2001,
41, 443–470.
[33] a2-Adrenoreceptor ligands: a) G. L. Grunewald, V. H. Dahanukar,
R. K. Jalluri, K. R. Criscione, J. Med. Chem. 1999, 42, 1982–1990;
b) G. L. Grunewald, T. M. Caldwell, Q. Li, K. R. Criscione, J. Med.
Chem. 1999, 42, 3588–3601; c) G. L. Grunewald, T. M. Caldwell, Q.
Li, K. R. Criscione, J. Med. Chem. 2001, 44, 2849–2856;
[10] a) C. H. Bushweller in Conformational Behavior of Six-Membered
Rings, (Ed.: E. Juaristi), VCH Publishers, 1995, Ch 2, p. 25; b) E. L.
Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, Wiley,
New York, 1994, p. 696.
[11] For example, Becke3LYP/6–311G(d,p) optimization of (CH3)4N+
leads to the following Mulliken charge distribution: N À0.32, C
À0.20, H +0.18. Within the NBO framework,[12,25] the charges for
the same structure are: Becke3LYP, N À0.31, C À0.35, H +0.23;
MP2, N À0.29, C À0.32, H +0.21.
[12] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO
Version 3.1 as implemented in Gaussian 98;[45] A. E. Reed, L. A.
Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926; cf. http://
[13] D. S. Balley, J. A. Walder, J. B. Lambert, J. Am. Chem. Soc. 1972, 94,
177–180.
1590
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 1579 – 1591