4562
Z. Wan et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4560–4562
40000
30000
20000
10000
0
- 0% inh
1.00
0.75
0.50
0.25
0.00
Vehicle
3.30E-10
1.00E-09
3.30E-09
1.00E-08
3.30E-08
0.5 µg/mouse
5.0 µg/mouse
pA2 = 10.7
- 100% inh
5
24
48
72
-11 -10 -9
-8
-7
-6
-5
-4
Time (hrs)
[Carbachol] (log M)
Figure 3. Duration of bronchoprotection for 4a.26
Figure 1. Functional antagonism of 4a in Ach-induced calcium mobilization (FLIPR)
employing CHO-M3.
Acknowledgment
of compound.21 All six compounds effectively antagonized the ago-
nist-induced responses resulting in a rightward shift of the acetyl-
choline concentration response curve in a manner similar to 4a at
the M3 receptor as shown in Figure 1. PA2 values are in good agree-
ment with the corresponding binding affinities (e.g., pKi). Schild
analysis21,24 of 4a against M3, Figure 1, would suggest competitive
antagonism.
Quaternary salts (e.g., 2a, 4a and 10a) were prepared to inves-
tigate its impact on potency. In general, their in vitro potency is
comparable to the amine. All quaternary salts, however, demon-
strate much greater magnitude inhibition than the corresponding
tertiary amines in response to aerosolized methacholine induced
bronchoconstriction in conscious mice when dosed by inhalation
Helpful discussions with Dr. James F. Callahan during the man-
uscript preparation are acknowledged.
References and notes
1. Romain, P. Prog. Respir. Res. 2001, 31, 11.
2. European Respiratory Society, European Lung Federation, European Lung White
book, 2003.
3. Barnes, P. J.; Shapiro, S. D.; Pauwels, R. A. Eur. Respir. J. 2003, 22, 672.
4. Barnes, P. J. Am. J. Respir. Crit. Care Med. 1999, 160, S72.
5. Barnes, P. J.; Stockley, R. A. Eur. Repir. J. 2005, 25, 1084.
6. Boyd, G.; Morice, A. H.; Pounsford, J. C.; Siebert, M.; Peslis, N.; Crawford, C. Eur.
Respir. J. 1997, 10, 815.
7. Norman, P.; Graul, A.; Rabasseda, X.; Castaner, J. Drugs Future 2000, 25, 693.
8. Eglen, R. M.; Choppin, A.; Watson, N. Trend. Pharmacol. Sci. 2001, 22, 409.
9. Wess, J. Trend. Pharmacol. Sci. 2003, 24, 414.
10. Gaulfield, M. P.; Birdsall, N. J. M. Pharmacol. Rev. 1998, 50, 279.
11. Disse, B. Life Sci. 2001, 68, 2557.
12. Fryer, A. D.; Jacoby, D. B. Am. J. Respir. Crit. Care Med. 1998, 158, S154.
13. Gosens, R.; Zaagsma, J.; Meurs, H.; Halayko, A. J. Respir. Res. 2006, 7, 1.
14. Belmonte, K. E. Proc. Am. Thorac. Soc. 2005, 2, 297.
24 h prior to the challenging at the dose of 5 lg per mouse. Of
the compounds screened, 4a exhibited the greatest inhibition
and was thus selected for more of detailed studies in the same
murine model. This inhibition was found to be dose dependent
with ED50 of 0.01
was extended up to 48 h when given by inhalation at two different
doses of 0.5 g per mouse and 5.0 g per mouse (Fig. 3).
lg/mouse (Fig. 2) and the bronchoprotection
15. Zirkle, C. L.; Geissman, T. A.; Bloom, M.; Craig, P. N.; Gerns, F. R.; Indik, Z. K.;
Pavloff, A. M. J. Org. Chem. 1962, 27, 1269.
16. Zirkle, C. L.; Anderson, E. L.; Craig, P. N.; Gerns, F. R.; Indik, Z. K.; Pavloff, A. M. J.
l
l
Med. Chem. 1962, 5, 341.
The pharmacokinetics of 4a in the rat are characterized by low
drug absorption, high plasma clearance, high-to-moderate volume
of distribution at steady state, a short terminal half-life and low
oral bioavailability. These characteristics are considered desirable
for an inhaled drug candidate. These results, as well as detailed
SAR discussions of this novel series of antagonists, will be reported
in due course.
17. Takahashi, Y.; Yoneda, N.; Nagai, H. Chem. Lett. 1985, 11, 1733.
18. Miyachi, H.; Kiyota, H.; Segawa, M. Bioorg. Med. Chem. Lett. 1999, 9, 3003.
19. Sagara, Y.; Sagara, T.; Uchiyama, M.; Otsuki, S.; Kimura, T.; Fujikawa, T.;
Noguchi, K.; Ohtake, N. J. Med. Chem. 2006, 49, 5653.
20. Ertl, P.; Pohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.
21. Arunlakshana, O.; Schild, H. O. Br. J. Pharmacol. 1959, 14, 48.
22. Schroeder, K. S.; Neagle, B. D. J. Biomol. Screening 1996, 1, 75.
23. (a) Sarau, H. M.; Ames, R. S.; Chambers, J.; Ellis, C.; Elshourbagy, N.; Foley, J. J.;
Schmidt, D. B.; Muccitelli, R. M.; Jenkins, O.; Murdock, P. R.; Herrity, N. C.;
Halsey, W.; Sathe, G.; Muir, A. I.; Nuthulaganti, P.; Dytko, G. M.; Buckley, P. T.;
Wilson, S.; Bergsma, D. J.; Hay, D. W. P. Mol. Pharmacol. 1999, 56, 657; (b) Jin, J.;
Budzik, B.; Wang, Y.; Shi, D.; Wang, F.; Xie, H.; Wan, Z.; Zhu, C.; Foley, J. J.;
Webb, E. F.; Berlanga, M.; Burman, M.; Sarau, H. M.; Morrow, D. M.; Moore, M.
L.; Rivero, R. A.; Palovich, M.; Salmon, M.; Belmonte, K. E.; Laine, D. I. J. Med.
Chem. 2008, 51, 5915.
24. Tallarida, R. J.; Cowan, A.; Adler, M. W. Life Sci. 1979, 25, 637.
25. Balb/C mice (n = 4) were treated with the compound intra-nasally (in) and then
challenged after 5 h with 30 mg/ml methacholine (aerosolized, 2 min). The
magnitude of bronchoconstriction was measured as Penh over the next 5 min
using a standard Buxco plethysmography system. The data is expressed as a
ratio of the Penh achieved with methacholine after drug was given to that
achieved before drug was given. A ratio of 1.0 (dotted line) indicates that there
was no change in the Penh in response to aerosolized methacholine (i.e., 0%
inhibition), and a ratio of 0.0 means that there was no bronchoconstriction in
response to methacholine challenge (i.e., 100% inh.).
1.00
0.75
0.50
0.25
0.00
- 0% inh
ED50 = 0.01µg/mouse
- 100% inh
10
0.001
0.01
0.1
1
Dose of compound (µg, i.n.)
26. Same as Ref. 25 except the mice were treated with the compound for 0.25–48 h
before the challenging.
Figure 2. Dose–response of bronchoprotection for 4a.25