Table 3 Selected 1H NMR chemical shifts for 4, 5, 19, 20 and 23 and
their methylated analogues
Engineering and Technology (IRCSET) and Trinity College
Dublin is also gratefully acknowledged.
Notes and references
† Characterisation data for 4: mp 144–146 ◦C, [a]D20 −98 (c 0.96, CHCl3);
dH (400 MHz, CDCl3) 0.95–1.18 (2H m), 1.80–2.20 (6H, m), 2.90–3.15
(3H, m), 3.40–3.55 (3H, m), 5.20 (1H, dd, J = 9.0, 8.5 Hz), 6.45 (1H,
d, J = 6.0 Hz), 7.25–7.38 (5H, m), 7.41–7.53 (4H, m), 7.60 (2H, d,
J = 6.0 Hz), 8.09 (1H, d, J = 6.0 Hz); dC (100 MHz, CDCl3) 23.3,
25.1, 30.2, 48.8, 51.6, 68.3, 81.5, 108.1, 116.2, 127.0, 127.1, 127.2, 127.3,
127.4, 127.6, 142.1, 144.6, 146.6, 147.6, 148.5, 170.4; HRMS calcd. for
C27H30N3O2 (M + 1) 428.2328, found 428.2338.
1 P. I. Dalko and L. Moisan, Angew. Chem., Int. Ed., 2004, 43, 5138.
2 (a) E. Vedejs, O. Daugulis and S. T. Diver, J. Org. Chem., 1996, 61,
430; (b) E. Vedejs and O. Daugulis, J. Am. Chem. Soc., 1999, 121,
5813; (c) E. Vedejs and J. A. MacKay, Org. Lett., 2001, 3, 535; (d) E.
Vedejs and E. Rozners, J. Am. Chem. Soc., 2001, 123, 2428; (e) E.
Vedejs, O. Daugulis, L. A. Harper, J. A. MacKay and D. R. Powell,
J. Org. Chem., 2003, 68, 5020; (f) E. Vedejs and O. Daugulis, J. Am.
Chem. Soc., 2003, 125, 4166.
3 (a) Reviews: S. France, D. J. Guerin, S. J. Miller and T. Leckta, Chem.
Rev., 2003, 103, 2985; (b) S.-K. Tian, Y. Chen, J. Hang, L. Tang, P.
McDaid and L. Deng, Acc. Chem. Res., 2004, 37, 621; (c) S. J. Miller,
Acc. Chem. Res., 2004, 37, 601; (d) E. R. Jarvo and S. J. Miller,
Tetrahedron, 2002, 58, 248; (e) G. C. Fu, Acc. Chem. Res., 2004, 37,
542; (f) G. C. Fu, Acc. Chem. Res., 2000, 33, 412.
4 (a) Peptide-based catalysts: S. J. Miller, G. T. Copeland, N. Papaioan-
nou, T. E. Horstmann and E. M. Ruel, J. Am. Chem. Soc., 1998,
120, 1629; (b) G. T. Copeland and S. J. Miller, , J. Am. Chem. Soc.,
2001, 123, 6496; (c) E. R. Jarvo, C. A. Evans, G. Y. Copeland and
S. J. Miller, J. Org. Chem., 2001, 66, 5522; (d) M. M. Vasbinder,
E. R. Jarvo and S. J. Miller, Angew. Chem., Int. Ed., 2001, 40, 2824;
(e) B. R. Sculibrene and S. J. Miller, J. Am. Chem. Soc., 2001, 123,
10125; (f) B. R. Sculibrene, A. J. Morgan and S. J. Miller, J. Am.
Chem. Soc., 2002, 124, 11653; (g) J. E. Imbriglio, M. M. Vasbinder
and S. J. Miller, Org. Lett., 2003, 5, 3741; (h) M. B. Fierman, D. J.
O’Leary, W. E. Steinmetz and S. J. Miller, J. Am. Chem. Soc., 2004,
126, 6967; (i) F. Formaggio, A. Barazza, A. Bertocco, C. Toniolo,
Q. B. Broxterman, B. Kaptein, E. Brasola, P. Pengo, L. Pasquato and
P. Scrimin, J. Org. Chem., 2004, 69, 3849.
5 (a) Aliphatic diamine catalysts: T. Oriyama, K. Imai, T. Hosoya and
T. Sano, Tetrahedron Lett., 1998, 39, 397; (b) T. Oriyama, K. Imai, T.
Sano and T. Hosoya, Tetrahedron Lett., 1998, 39, 3529; (c) T. Sano,
K. Imai, K. Ohashi and T. Oriyama, Chem. Lett., 1999, 265.
6 (a) W. Steglich and G. Ho¨fle, Angew. Chem., Int. Ed. Engl., 1969, 8,
981; (b) A. C. Spivey and S. Arseniyadis, Angew. Chem., Int. Ed.,
2004, 43, 5436.
Catalyst
d H-2a,b,c
d H-5a,b,c
d H-6a,b,c
d CH3
4
4a
5
5a
19
19a
20
20a
23
23a
7.33
6.45
6.80 (0.45)
6.45
6.70 (0.25)
6.42
6.79 (0.37)
6.42
6.66 (0.24)
6.47
6.90 (0.43)
8.09
—
3.88
—
3.33
—
4.02
—
3.49
—
4.21
6.52 (−0.81)
8.04 (−0.05)
7.51
8.09
5.99 (−1.52)
7.73
7.88 (−0.21)
8.12
6.68 (−1.05)
8.10 (−0.02)
7.93
8.11
6.39 (−1.54)
8.19
8.17 (−0.02)
7.88 (−0.23)
8.16
8.21 (0.05)
a Values for d are quoted in ppm with CDCl3 as solvent. b Value in
parenthesis represents Dd: the change in chemical shift of the proton
indicated on methylation (in ppm); a negative value for Dd indicates an
upfield shift. c All pyridine ring proton resonances were unambiguously
assigned by NMR spectroscopy (1H–1H COSY, 1H–13C COSY, NOE
and 1-D TOCSY experiments).
trajectory of 21 by H-bonding and (assuming that the naphthyl
moiety avoids the acylated catalyst) the (R)-21 antipode reacts
relatively slowly due to catalyst-methyl group repulsion as the
substrate approaches (Fig. 2).
7 (a) E. Vedejs and X. Chen, J. Am. Chem. Soc., 1996, 118, 1809;
(b) S. A. Shaw, P. Aleman and E. Vedejs, J. Am. Chem. Soc., 2003,
125, 13368.
8 (a) J. C. Ruble and G. C. Fu, J. Org. Chem., 1996, 61, 7230; (b) J. C.
Ruble, H. A. Lantham and G. C. Fu, J. Am. Chem. Soc., 1997, 119,
1492; (c) J. C. Ruble, J. Tweddle and G. C. Fu, J. Org. Chem., 1998,
63, 2794; (d) J. C. Ruble and G. C. Fu, J. Am. Chem. Soc., 1998, 120,
11532; (e) B. L. Houdous, J. C. Ruble and G. C. Fu, J. Am. Chem.
Soc., 1999, 121, 5091; (f) I. Yutaka and G. C. Fu, Chem. Commun.,
2000, 119; (g) S. Bellemin-Laponnaz, J. Tweddle, J. C. Ruble, F. M.
Breitling and G. C. Fu, Chem. Commun., 2000, 1009; (h) S. Arai, S.
Bellemin-Laponnaz and G. C. Fu, Angew. Chem., Int. Ed, 2001, 40,
234; (i) B. L. Houdous and G. C. Fu, J. Am. Chem. Soc., 2002, 124,
10006; (j) I. D. Hills and G. C. Fu, Angew. Chem., Int. Ed., 2003, 42,
3921; (k) A. H. Mermerian and G. C. Fu, J. Am. Chem. Soc., 2003,
125, 4050.
9 (a) A. C. Spivey, T. Fekner and H. Adams, Tetrahedron Lett., 1998,
39, 8919; (b) A. C. Spivey, T. Fekner, S. E. Spey and H. Adams,
J. Org. Chem., 1999, 64, 9430; (c) A. C. Spivey, T. Fekner and S. E.
Spey, J. Org. Chem., 2000, 65, 3154; (d) A. C. Spivey, A. Maddaford,
T. Fekner, A. J. Redgrave and C. S. Frampton, J. Chem. Soc., Perkin
Trans. 1, 2000, 3460; (e) A. C. Spivey, A. Maddaford, D. P. Leese
and A. J. Redgrave, J. Chem. Soc., Perkin Trans. 1, 2001, 1785;
(f) A. C. Spivey, P. Charbonneau, T. Fekner, D. H. Hochmuth,
A. Maddaford, C. Malardier-Jugroot, A. J. Redgrave and M. A.
Whitehead, J. Org. Chem, 2001, 66, 7394; (g) A. C. Spivey, F. Zhu,
M. B. Mitchell, S. G. Davey and R. L. Jarvest, J. Org. Chem., 2003,
68, 7379; (h) A. C. Spivey, D. P. Leese, F. Zhu, S. G. Davey and R. L.
Jarvest, Tetrahedron, 2004, 60, 4513.
Fig. 2 Possible pre-TS-assemblies for the acylation of 21 by (iPrCO)2O
catalysed by 4.
In summary, we have developed a new class of active, chiral
4-(pyrrolidino)-pyridine derivatives (4 and 5) for the kinetic
resolution of sec-alcohols such as 15 and 21 with selectivity
approaching synthetically useful levels. These proline-derived
promoters are readily prepared from simple starting materials
without the need for resolution steps.24 To our knowledge 4
and 5 represent the first chiral 4-N,N-dialkylaminopyridine
catalysts to (synergistically) employ both van der Waals (p)
interactions and hydrogen bonding to allow remote chirality
to exert stereochemical influence on an acylation reaction.
Experiments are underway to further explore both the mode-
of-action and potential utility of these catalysts (and modified
analogues) in a range of enantioselective acyl-transfer reactions.
The results of these studies will be reported in due course.
We would like to thank Dr John O’Brien for NMR spectra.
Financial support from the Irish Research Council for Science
10 (a) G. Priem, M. S. Anson, S. F. Macdonald, B. Pelotier and I. B.
Campbell, Tetrahedron Lett., 2002, 43, 6001; (b) G. Priem, B. Pelotier,
S. F. Macdonald, M. S. Anson and I. B. Campbell, J. Org. Chem.,
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 9 8 1 – 9 8 4
9 8 3