ORGANIC
LETTERS
2005
Vol. 7, No. 10
2071-2073
Rhodium-Catalyzed Addition of Arylzinc
Reagents to Aryl Alkynyl Ketones:
Synthesis of
Indanones
â,â-Disubstituted
Ryo Shintani and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto UniVersity, Sakyo,
Kyoto 606-8502, Japan
Received March 30, 2005
ABSTRACT
A rhodium-catalyzed addition of arylzinc reagents to aryl alkynyl ketones for the synthesis of highly substituted indanones has been developed.
The key to success has proved to be a proper choice of the reaction system, which involves the employment of dppf as a ligand and
1,2-dichloroethane as a solvent.
Transition-metal-catalyzed multiple-bond-forming reactions
are powerful methods for the efficient construction of
structurally complex molecules, and rhodium-catalyzed
processes involving a 1,4-rhodium migration from an alkenyl
or alkyl carbon to an aryl carbon are becoming useful ways
of achieving such transformations in a single operation.1,2
In this context, Iwasawa1d and our group1e reported a
rhodium-catalyzed isomerization of R-arylpropargyl alcohols
to â-monosubstituted indanones and proposed the interme-
diacy of an aryl alkynyl ketone species, which undergoes a
hydrorhodation followed by a 1,4-rhodium migration. This
reaction cascade prompted us to focus on the development
of a rhodium-catalyzed addition of organometallic reagents
to aryl alkynyl ketones for the synthesis of â,â-disubstituted
indanones.3 Here we describe our significant progress toward
this goal: specifically, a Rh/dppf complex can effectively
catalyze the addition of arylzinc reagents to aryl alkynyl
ketones, furnishing highly substituted indanones in good yield
(eq 1).
Although phenylrhodation is known to occur to an internal
alkyne, generating an alkenylrhodium species,1b,c,4 one can
(1) (a) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem.
Soc. 2000, 122, 10464. (b) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara,
M. J. Am. Chem. Soc. 2001, 123, 9918. (c) Miura, T.; Sasaki, T.; Nakazawa,
H.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1390. (d) Yamabe, H.;
Mizuno, A.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 3248.
(e) Shintani, R.; Okamoto, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127,
2872.
(2) For recent examples of palladium-catalyzed transformations involving
a 1,4-palladium migration, see: (a) Campo, M. A.; Larock, R. C. J. Am.
Chem. Soc. 2002, 124, 14326. (b) Campo, M. A.; Huang, Q.; Yao, T.; Tian,
Q.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 11506. (c) Huang, Q.;
Campo, M. A.; Yao, T.; Tian, Q.; Larock, R. C. J. Org. Chem. 2004, 69,
8251. (d) Zhao, J.; Larock, R. C. Org. Lett. 2005, 7, 701.
(3) For recent examples of synthetic methods for â,â-disubstituted
indanones, see: (a) Rendy, R.; Zhang, Y.; McElrea, A.; Gomez, A.; Klumpp,
D. A. J. Org. Chem. 2004, 69, 2340. (b) Prakash, G. K. S.; Yan, P.; To¨ro¨k,
B.; Olah, G. A. Catal. Lett. 2003, 87, 109. (c) Fillion, E.; Fishlock, D.
Org. Lett. 2003, 5, 4653. (d) Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J.
M. J. Org. Chem. 2005, 70, 1316. (e) Lee, S. I.; Son, S. U.; Choi, M. R.;
Chung, Y. K.; Lee, S.-G. Tetrahedron Lett. 2003, 44, 4705.
(4) (a) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi,
T. J. Am. Chem. Soc. 2005, 127, 54. (b) Miura, T.; Shimada, M.; Murakami,
M. J. Am. Chem. Soc. 2005, 127, 1094.
10.1021/ol0506819 CCC: $30.25
© 2005 American Chemical Society
Published on Web 04/09/2005