Communication
ChemComm
7 Recent advances: (a) Y. Yan, X. Tong, K. Wang and X. Bai, Catal.
Commun., 2014, 43, 112; (b) M. M. Dell’Anna, M. Mali, P. Mastrorilli,
P. Cotugno and A. Monopoli, J. Mol. Catal. A: Chem., 2014, 386, 114.
8 J. M. Hoover and S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 16901.
9 J. M. Hoover and S. S. Stahl, Org. Synth., 2013, 90, 240.
10 M. F. Semmelhack, C. R. Schmid, D. A. Cortes and C. C. Chou,
J. Am. Chem. Soc., 1984, 106, 3374.
11 G. Ragagnin, B. Betzemeier, S. Quici and P. Knochel, Tetrahedron,
2002, 58, 3985.
12 P. Gamez, I. W. C. E. Arends, J. Reedijk and R. A. Sheldon, Chem.
Commun., 2003, 2414.
13 D. Geiblmeir, W. G. Jary and H. Falk, Monatsh. Chem. Chem. Mon.,
2005, 136, 1591.
14 N. Jiang and A. J. Ragauskas, J. Org. Chem., 2006, 71, 7087.
15 (a) P. J. Figiel, M. Leskela and T. Repo, Adv. Synth. Catal., 2007,
349, 1173; (b) P. J. Figiel, A. Sibaouih, J. U. Ahmad, M. Nieger,
M. T. Raisanen, M. Leskela and T. Repo, Adv. Synth. Catal., 2009,
351, 2625.
Recycling of the aqueous reaction mixture could be smoothly
achieved using educt 4 as a model case (Scheme 7). With an ‘‘in-flask’’
workup, 5 was obtained with very low E factors,23 suggestive of an
overall environmentally attractive process, unlike literature methods
to date, although flow chemistry is becoming increasingly competitive
in this regard.24
In summary, methodology for selective oxidation of activated
alcohols to aldehydes and ketones has been developed that relies
on the greater solubility of gases, specifically oxygen, inside the
hydrophobic pockets associated with aqueous nanomicelles.
This allows for air to function as the stoichiometric oxidant,
rather than traditional oxidizing agents.
Financial support provided by the NSF (CHE 0948479) is
warmly acknowledged with thanks.
16 S. Mannam, S. K. Alamsetti and G. Sekar, Adv. Synth. Catal., 2007,
349, 2253.
17 G. Zhang, X. Han, Y. Luan, Y. Wang, X. Wen, L. Xu and C. Ding,
Chem. Commun., 2013, 49, 7908.
18 G. Zhang, X. Han, Y. Luan, Y. Wang, X. Wen, L. Xu, C. Ding and
J. Gao, RSC Adv., 2013, 3, 19255.
References
1 P. Dunn, R. Henderson, I. Mergelsberg and A. Wells, Collaboration to
Deliver a Solvent Selection Guide for the Pharmaceutical Industry Moving 19 (a) N. A. Isley, S. Dobarco and B. H. Lipshutz, Green Chem., 2014,
Towards Greener Solvents for Pharmaceutical Manufacturing—An Industry
Perspective, ACS Green Chemistry Institute Pharmaceutical, College
Park, MD, 2009.
2 P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice,
Oxford University Press, New York, 1998.
16, 1480; (b) P. Klumphu and B. H. Lipshutz, J. Org. Chem., 2014,
79, 888.
20 B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata,
C. Duplais and A. Krasovskiy, J. Org. Chem., 2011, 76, 4379. See Aldrich
catalog numbers 733857 and 763918.
3 (a) R. A. Sheldon, Chem. Ind., 1992, 903; (b) R. A. Sheldon, Green 21 S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb and
Chem., 2007, 9, 1273. K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44, 3275.
4 IUPAC Solubility Data Series, Vol. 5/6, Hydrogen and Deuterium, 22 (a) S. H. Handa, J. C. Fennewald and B. H. Lipshutz, Angew. Chem.,
ed. C. L. Young, Pergamon Press, Oxford, England, 1981.
5 S. Handa, J. C. Fennewald and B. H. Lipshutz, Angew. Chem., Int. Ed.,
2014, 53, 3432.
Int. Ed., 2014, 53, 3432; (b) J. C. Fennewald and B. H. Lipshutz, Green
Chem., 2014, 16, 1097.
23 R. A. Sheldon, I. W. C. E. Arends and U. Hanefeld, Green Chemistry
and Catalysis, Wiley-VCH, Weinheim, 2007.
6 D. Myers, Surfactant Science and Technology, Wiley-Interscience,
2006; G. Oehme, E. Paetzold and T. Dwars, Angew. Chem., Int. Ed., 24 J. F. Greene, J. M. Hoover, D. S. Mannel, T. W. Root and S. S. Stahl,
2005, 44, 7174.
Org. Process Res. Dev., 2013, 17, 1247.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 11378--11381 | 11381