G. Madhusudhan et al. / Tetrahedron Letters 44 (2003) 6323–6325
6325
Conference on Antimicrobial Agents and Chemotherapy,
San Francisco, September 1995, F 208 p. 149; (b) Brick-
ner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Manni-
nen, P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega, K.
C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko,
G. E. J. Med. Chem. 1996, 39, 673–679.
4. (a) Hideaki, K.; Masayuki, M.; Hiroyuki, K.; Tetsu-
ichiro, M.; Kimiko, K.; Hiroyuki, O. J. Org. Chem. 1999,
64, 1052–1053; (b) Yasuharu, S.; Akiko, S.; Jeong, S.;
Tadashi, N. Tetrahedron Lett. 1999, 40, 4203–4206; (c)
Madhan, A.; Ravi Kumar, A.; Venkateswara Rao, B.
Tetrahedron: Asymmetry 2001, 12, 2009–2011; (d) Hamer-
sak, Z.; Ljubovic, E.; Mercep, M.; Mesic, M.; Sunjic, V.
Synthesis 2001, 13, 1989–1992.
5. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996,
96, 835–875.
6. Knolker, H. J. K.; Braxmeier, T. Tetrahedron Lett. 1998,
39, 9407–9410.
Scheme 3.
1
In their H NMR spectra, chemical shift values for the
vicinal protons 4H and 5H in compounds 2 and 5 were
found to be at l ꢀ5.2 ppm and l 4.7–5.0 ppm,
respectively (Table 2). This is in accordance with
reported trends21 and was further supported by correla-
tion of the dihedral angle calculated by energy mini-
mization of structures 2 and 5 using Chem Draw
software (Chem3D Pro Version 3.5.1) and the Karplus
curve. According to the Karplus curve, the coupling
constant J should be ꢀ5.0 Hz for the anti-configura-
tion as observed for 5 (J=ꢀ5.0 Hz). Similarly 2 is
assigned the syn-configuration.
7. Takacs, J. M.; Jaber, M. R.; Vellekoop, A. S. J. Org.
Chem. 1998, 63, 2742–2748.
8. Agami, C.; Couty, F.; Hamon, L.; Venier, O. Tetrahedron
Lett. 1993, 34, 4509–4512.
9. Curran, T. P.; Pollastri, M. P.; Abelleira, S. M.; Messier,
R. J.; McCollum, T. A.; Rowe, C. G. Tetrahedron Lett.
1994, 35, 5409–5412.
10. Zhao, H.; Thurkauf, A. Synlett 1999, 8, 1280–1282.
11. Benedetti, F.; Norbedo, S. Tetrahedron Lett. 2000, 41,
10071–10074.
All syn oxazolidinones 2 were converted to their anti
epimers 5 by epimerisation of the hydroxy center with
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)22 in toluene
at room temperature (Scheme 3). Energy minimization
data23 further support the formation of anti over syn
products (for syn-oxazolidinones 2 ꢀ29.4 kcal/mol and
for anti oxazolidinones 5 ꢀ25.2 kcal/mol).
12. Mitsunobu, O. Synthesis 1981, 1–28.
13. Appel, R. Angew. Chem. Int. Ed. Engl. 1975, 14, 801–811.
14. Miller, M. J.; Mattingly, P. G.; Morrison, M. A.; Kerwin,
J. F., Jr. J. Am. Chem. Soc. 1980, 102, 7026–7032.
15. (a) Appel, R.; Kleinstuck, R. Chem. Ber. 1974, 5, 107; (b)
Okada, T.; Schimura, K.; Sudo, R. Bull. Chem. Soc. Jpn.
1970, 43, 1185; (c) Wipf, P.; Miller, C. P. Tetrahedron
Lett. 1992, 33, 6267–6270.
16. Madhusudhan, G.; Om Reddy, G.; Ramanatham, J.;
Dubey, P. K. Indian J. Chem. 2003, submitted.
17. Hamersak, Z.; Ljuboric, E.; Mercep, M.; Mesic, M.;
Sunjic, V. Synthesis 2001, 13, 1989–1992.
18. To a solution of compound 1 (2 g) in acetonitrile (20 mL)
was added Ph3P (1.2 equiv.), CCl4 (2.5 equiv.), Et3N (2.5
equiv.). The resulting mixture was stirred at room tem-
perature overnight. The reaction mass was concentrated
under reduced pressure to give a residue. This residue was
purified by flash chromatography on 230–400 mesh silica
gel (ethyl acetate–petoleum ether 4:6) to afford the oxa-
zolidinone 5.
Acknowledgements
The authors are thankful to Dr. Reddy’s Group for
supporting this work. Acknowledgements are also due
to all the colleagues in Discovery Research and Tech-
nology Development Center. Discussions with Dr. J.
Moses Babu for the dihedral angle calculations and Dr.
B. Gopalakrishnan for energy calculations, of Discov-
ery Research are also gratefully acknowledged.
19. Slagle, J. D.; Huang, T. T. S.; Franzus, B. J. Org. Chem.
References
1981, 46, 3526–3530.
20. Meyers, A. I.; Hoyer, D. Tetrahedron Lett. 1985, 26,
4687–4690.
21. (a) Murakami, M.; Ito, H.; Ito, Y. J. Org. Chem. 1993,
58, 6766; (b) Blas, J. D.; Carretero, J. C.; Dominguez, E.
Tetrahedron Lett. 1994, 35, 4603–4606.
22. Chauvette, R. R. US Patent 4,906,769, 1990.
23. All calculations were carried out on Silicon Graphics
Octane 2 workstation. Oxazolidinones 2 and 5 were
optimized by using MMFF94 force field and charges. A
distance dependent dielectric constant of 1 was used for
the calculations.
1. (a) Evans, D. A. Aldrichim. Acta 1982, 15, 23–32; (b)
Ager, D. J.; Prakash, I.; Schaad, D. R. Aldrichim. Acta
1997, 30, 3–12 and references cited therein.
2. Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.;
Wuonola, M. A.; McRipley, R. J.; Eustice, D. C.; Eberly,
V. S.; Bartholomew, P. T.; Slee, A. M.; Forbes, M. J.
Med Chem. 1989, 32, 1673–1681.
3. (a) Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.;
Garmon, S. A.; Grega, K.; Hendges, S. K.; Manninen, P.
R.; Toops, D. S.; Ulanowicz, D. A.; Kilburn, J. O.;
Glickman, S.; Zurenko, G. E.; Ford, C. 35th Interscience