2280 Organometallics, Vol. 24, No. 10, 2005
Osintseva et al.
Scheme 1
Minor products of these reactions mainly present
species containing combinations of the same cyclic
fragments, i.e., oxaruthenacycles and dihydropyran
rings.
In addition, we have studied thermal reactions of Ru3-
(CO)12 with dibenzoylethylene (PhCOCHdCHCOPh)2e
and dimethylfumarate (CH3OOCCHdCHCOOCH3).2f
The main structural block of the complexes thus ob-
tained was still the oxaruthenacycle. However, the
presence of additional centers available for coordination,
i.e., oxygen lone pairs, leads to bicyclic systems, in which
both oxygen atoms are involved in the chelation of two
different ruthenium atoms.
In the present paper, we report on the reactivity of
dibenzylideneacetone (DBA), PhCHdCHCOCHdCHPh
(1), in the thermally activated reaction with Ru3(CO)12.
In contrast to all earlier studied R,â-unsaturated ke-
tones, DBA contains two symmetric olefin groups, which
allows additional possibilities for coordination to metal
atoms. In this respect a formation of complexes with
earlier unobserved coordination modes may be sug-
gested. Furthermore, the interest in the DBA ligand is
due to its role in organometallic chemistry. In particular,
palladium DBA complexes have been extensively used
in ligand exchange reactions.3a-c Numerous palladium
complexes containing DBA, along with other ligands
such as phosphines, isocyanates, amines, olefins, and
acetylenes, have been prepared and characterized.3d-i
Extension of synthetic methods developed for palladium
to other metals led to development of DBA complexes
of Pt,4 Rh,5a and Ir.5b In the Pt, Pd, Rh, and Ir complexes
known so far, the DBA ligand is most frequently
π-coordinated through one of the CdC bonds or, less
frequently, through both CdC bonds; coordination
through the oxygen atom or CdO double bond has never
been observed.
A number of complexes have been synthesized not
directly from DBA or substituted divinylideneacetones,
but rather as a result of coupling of acetylenes coordi-
nated to transition metal clusters with participation of
metal-coordinated carbonyls. Such reactions have been
realized for Mo6a and Mn,6b,c and no π-coordination was
observed in these complexes.
Complexes of metals from the iron subgroup with the
DBA ligand,7a,b involving a variety of substituted
divinylideneacetones7c,d and ligands, produced via co-
ordination-assisted coupling of acetylenes and carbonyl
ligand,7e,f,g manifest the most diverse coordination modes.
The ligand binding therein may be realized either
(1) (a) Howell, J. A. S. Chemistry of Enones; Patai, S., Rappoport,
Z., Eds.; John Wiley & Sons Ltd.: New York, 1989. (b) Hegedus, L. S.;
Imwinkelreid, R.; Alarid-Sargent, M.; Drorak, D.; Saton, Y. J. Am.
Chem. Soc. 1990, 112, 1109. (c) Hegedus, L. S.; Schwindt, M. A.;
Delombert, S.; Imwinkelreid, R. J. Am. Chem. Soc. 1990, 112, 2264.
(d) Morris, G.; Saberi, S. P.; Thomas, S. E. J Chem. Soc., Chem.
Commun. 1993, 209. (e) Dosreis, A. C.; Hegedus, L. S. Organometallics
1995, 14, 1586.
(2) (a) Rybinskaya, M. I.; Rybin, L. V.; Osintseva, S. V.; Dolgushin,
F. M.; Yanovsky, A. I.; Struchkov, Yu. T. Russ. Chem. Bull. 1995, 44,
154 [Izv. Akad. Nauk, Ser. Khim. 1995, 159]. (b) Rybin, L. V.;
Osintseva, S. V.; Batsanov, A. S.; Struchkov, Yu. T.; Petrovskii, P. V.;
Rybinskaya, M. I. Russ. Chem. Bull. 1993, 42, 1228 [Izv. Akad. Nauk,
Ser. Khim. 1993, 1285]. (c) Rybin, L. V.; Osintseva, S. V.; Petrovskaya,
E. A.; Kreindlin, A. Z.; Dolgushin, F. M.; Yanovsky, A. I.; Petrovskii,
P. V.; Rybinskaya, M. I. Russ. Chem. Bull. 2000, 44, 154 [Izv. Akad.
Nauk, Ser. Khim. 2000, 1616]. (d) Osintseva, S. V.; Dolgushin, F. M.;
Petrovskii, P. V.; Shteltser, N. A.; Kreindlin, A. Z.; Rybin, L. V.;
Rybinskaya, M. I. Russ. Chem. Bull. 2002, 51, 1754 [Izv. Akad. Nauk,
Ser. Khim. 2002, 1610]. (e) Rybinskaya, M. I.; Rybin, L. V.; Osintseva,
S. V.; Dolgushin, F. M.; Yanovsky, A. I.; Struchkov, Yu. T.; Petrovskii,
P. V. J. Organomet. Chem. 1997, 536-537, 345. (f) Shteltser, N. A.;
Rybin, L. V.; Petrovskaya, E. A.; Batsanov, A. S.; Djafarov, M. X.;
Struchkov, Yu. T.; Rybinskaya, M. I.; Petrovskii, P. V. Organomet.
Chem. USSR 1992, 4 [Metalloorg. Khim. 1992, 5, 1009].
(3) (a) Ukai, T.; Ishii, H.; Bonnet, J. J.; Ibers, J. A. J. Organomet.
Chem. 1974, 65, 253. (b) Mazza, M. C.; Pierpont, C. G. Inorg. Chem.
1973, 2955. (c) Tsuji, T. Palladium Reagents and Catalysts: Innova-
tions in Organic Synthesis; Wiley: Chichester, 1995. (d) Amatore, C.;
Jutand, A. Coord. Chem. Rev. 1998, 178-180, 511. (e) Pierpont, C. G.;
Buchanan, R. M.; Downs, H. H. J. Organomet. Chem. 1977, 124, 103.
(f) Herrmann, W. A.; Thiel, W. R.; Brossmer, C.; Ofele, K.; Priermeier,
T.; Scherer, W. J. Organomet. Chem. 1993, 461, 51. (g) Burrows, A.
D.; Choi, N.; McPartlin, M.; Mingos, D. M. P.; Tarlton, S. V.; Vilar, R.
J. Organomet. Chem. 1999, 573, 313. (h) Selvakumar, R.; Valentini,
M.; Worle, M.; Pregosin, P. S.; Albinati, A. Organometallics 1999, 18,
1207. (i) Reid, S. M.; Mague, J. T.; Fink, M. J. J. Organomet. Chem.
2000, 616, 10.
(4) (a) Lewis, L. N.; Krafft, T. A.; Huffman, J. C. Inorg. Chem. 1992,
3555. (b) Fong, S. W. A.; Vittal, J. J.; Hor, T. S. A. Organometallics
2000, 19, 918.
(5) (a) Ibers, J. A. J. Organomet. Chem. 1974, 73, 389. (b) Orpen,
A. G.; Pringle, P. G.; Smith, M. B.; Worboys, K. J. Organomet. Chem.
1998, 550, 255.
(6) (a) Allen, S. A.; Green, M.; Norman, N. C.; Paddick, K. E.; Orpen,
A. G. J. Chem. Soc., Dalton Trans. 1983, 1625. (b) Adams, R. D.; Chen,
L.; Wu, W. Organometallics 1993, 12, 4112. (c) Adams, R. D.; Chen,
G.; Chen, L.; Wu, W.; Yin, J. Organometallics 1993, 12, 3431.