3166 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 14
Letters
Minn, A. J.; Thompson, C. B.; Fesik, S. W. Structure of Bcl-xL-
Bak peptide complex: Recognition between regulators of apoptosis.
Science 1997, 275, 983-986.
of CF3CO2Ag to give iodide 11, which was subjected to Suzuki
coupling with 1,4-phenylenebisboronic acid to give methyl ether
6. All six O-methyl groups were successfully removed to give
crude isoflavone 4, which was purified by recrystallization from
acetone. Isoflavone 5 was also synthesized in a similar manner
as 4, except that phenylboronic acid was used in the Suzuki
coupling.
(9) Petros, A. M.; Nettesheim, D. G.; Wang, Y.; Olejniczak, E. T.;
Meadows, R. P.; Mack, J.; Swift, K.; Matayoshi, E. D.; Zhang, H.;
Thompson, C. B.; Fesik, S. W. Rationale for Bcl-xL/Bad peptide
complex formation from structure, mutagenesis, and biophysical
studies. Protein Sci. 2000, 9, 2528-2534.
(10) Wang, J. L.; Liu, D.; Zhang, Z. J.; Shan, S.; Han, X.; Srinivasula, S.
M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. Structure-based
discovery of an organic compound that binds Bcl-2 protein and
induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 7124-7129.
(11) Czabotar, P. E.; Lee, E. F.; van Delft, M. F.; Day, C. L.; Smith, B.
J.; Huang, D. C.; Fairlie, W. D.; Hinds, M. G.; Colman, P. M. Proc.
Natl. Acad. Sci. U.S.A. 2007, Epub ahead of print.
(12) Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.; Wagner, G.;
Mitchison, T.; Yuan, J. Identification of small-molecule inhibitors
of interaction between the BH3 domain and Bcl-xL. Nat. Cell Biol.
2001, 3, 173-182.
(13) Tzung, S. P.; Kim, K. M.; Basanez, G.; Giedt, C. D.; Simon, J.;
Zimmerberg, J.; Zhang, K. Y.; Hockenbery, D. M. Antimycin A
mimics a cell-death-inducing Bcl-2 homology domain 3. Nat. Cell
Biol. 2001, 3, 183-91.
(14) Enyedy, I. J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X.; Cao, Y.;
Guo, R.; Li, B.; Zhu, X.; Huang, Y.; Long, Y. Q.; Roller, P. P.;
Yang, D.; Wang, S. Discovery of small-molecule inhibitors of Bcl-2
through structure-based computer screening. J. Med. Chem. 2001,
44, 4313-4324.
(15) Kitada, S.; Leone, M.; Sareth, S.; Zhai, D.; Reed, J. C.; Pellecchia,
M. Discovery, characterization, and structure-activity relationships
studies of proapoptotic polyphenols targeting B-Cell lymphocyte/
leukemia-2 proteins. J. Med. Chem. 2003, 46, 4259-4264.
(16) Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.;
Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges,
J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer,
A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S.;
Nimmer, P. M.; O’Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed,
J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.;
Wang, B.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H.
An inhibitor of Bcl-2 family proteins induces regression of solid
tumours. Nature 2005, 435, 677-681.
(17) Petros, A. M.; Dinges, J.; Augeri, D. J.; Baumeister, S. A.;
Betebenner, D. A.; Bures, M. G.; Elmore, S. W.; Hajduk, P. J.;
Joseph, M. K.; Landis, S. K.; Nettesheim, D. G.; Rosenberg, S. H.;
Shen, W.; Thomas, S.; Wang, X.; Zanze, I.; Zhang, H.; Fesik, S. W.
Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL
from NMR and parallel synthesis. Discovery of a potent inhibitor of
the antiapoptotic protein Bcl-xL from NMR and parallel synthesis.
J. Med. Chem. 2006, 49, 656-663.
In summary, we have designed and synthesized compound
4, which mimics the key binding residues in the Bim BH3
peptide in the interaction with Bcl-2. Compound 4, which was
named as BI-33, binds to Bcl-2 and Mcl-1 proteins with Ki
values of 17 nM and 18 nM, respectively, and has a relatively
weak affinity to Bcl-xL. Compound 4 is potent in inhibition of
cell growth in the MDA-MB-231 breast cancer cell line with
high levels of Bcl-2 and Mcl-1 proteins and effectively induces
apoptosis in a dose-dependent manner in the MDA-MB-231 cell
line. Of significance, compound 4 has a novel chemical scaffold
that is different from any known small-molecule inhibitors of
the anti-apoptotic Bcl-2 protein and represents a new class of
small-molecule inhibitors targeting the anti-apoptotic Bcl-2
proteins. Taken together, our data indicate that compound 4 is
a potent and cell-permeable small-molecule BH3 mimetic.
Extensive in Vitro and in ViVo studies are in progress to elucidate
further the molecular mechanism of action of compound 4 for
apoptosis induction and to ascertain its therapeutic potential,
and the results will be reported in due course. The study reported
here demonstrates that a structure-based strategy is effective
for the design of truly novel, potent, drug-like, nonpeptide,
small-molecule inhibitors that target protein-protein interac-
tions.
Acknowledgment. We are grateful for the financial support
from the National Cancer Institute, National Institutes of Health
(U19CA113317), the Department of Defense Breast Cancer
Program (BC0009140), the Department of Defense Prostate
Cancer Program (PC040537), the Prostate Cancer Foundation,
the Breast Cancer Research Foundation, the Susan G. Komen
Foundation, Ascenta Therapeutics, Inc., and the Intramural
Research Program of the National Institutes of Health from the
National Cancer Institute, Center for Cancer Research.
(18) Wang, G.; Nikolovska-Coleska, Z.; Yang, C.-Y.; Wang, R.; Tang,
G.; Guo, J.; Shangary, S.; Qiu, S.; Gao, W.; Yang, D.; Meagher, J.;
Stuckey, J.; Krajewski, K.; Jiang, S.; Roller, P. P.; Abaan, H. O.;
Tomita, Y.; Wang, S. Structure-based design of potent small-molecule
inhibitors of anti-apoptotic Bcl-2 proteins. J. Med. Chem. 2006, 49,
6139-6142.
(19) Tang, G.; Yang, C.-Y.; Nikolovska-Coleska, Z.; Guo, J.; Qiu, S.;
Wang, R.; Gao, W.; Wang, G.; Stuckey, J.; Krajewski, K.; Jiang, S.;
Roller, P. P.; Wang, S. Pyrogallol-based molecules as potent inhibitors
of the antiapoptotic Bcl-2 proteins. J. Med. Chem. 2007, 50, 1723-
1726.
Supporting Information Available: An experimental section
including information on the synthesis and chemical data for
compounds 2-6, molecular modeling methods and results for 2
and 4, the experimental procedure for the fluorescence polarization-
based binding assays for Bcl-2, Bcl-xL, and Mcl-1, details on the
cellular growth inhibition, and apoptosis assays. This material is
References
(1) Adams, J. M.; Cory, S. The Bcl-2 protein family: Arbiters of cell
(20) Wang, S. and Yang, D. Small Molecule Antagonists of Bcl-2 family
proteins, U.S. Patent application series # 20030008924, May 30, 2002.
(21) Saleh, M.; Pitot, H.; Hartung, J.; Holmlund, J.; Albert LoBuglio, A.;
Forero, A. Phase I trial of AT-101, an orally bioavailable inhibitor
of Bcl-2, in patients with advanced malignancies; The 2005 AACR-
NCI-EORTC International Conference on Molecular Targets and
Cancer Therapeutics: Discovery, Biology, and Clinical Applications,
November 14-18, 2005, Philadelphia, Pennsylvania; American
Association for Cancer Research: Philadelphia, PA, 2005, Abstract
#C89.
(22) van Delft, M. F.; Wei, A. H.; Mason, K. D.; Vandenberg, C. J.; Chen,
L.; Czabotar, P. E.; Willis, S. N.; Scott, C. L.; Day, C. L.; Cory, S.;
Adams, J. M.; Roberts, A. W.; Huang, D. C. The BH3 mimetic ABT-
737 targets selective Bcl-2 proteins and efficiently induces apoptosis
Via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006, 10, 389-
399.
survival. Science 1998, 281, 1322-1326.
(2) Reed, J. C. Bcl-2 family proteins: Strategies for overcoming
chemoresistance in cancer. AdV. Pharmacol. 1997, 41, 501-553.
(3) Chao, D. T.; Korsmeyer, S. J. Bcl-2 family: Regulators of cell death.
Annu. ReV. Immunol. 1998, 16, 395-419.
(4) Minn, A. J.; Swain, R. E.; Ma, A.; Thompson, C. B. Recent progress
on the regulation of apoptosis by bcl-2 family members. AdV.
Immunol. 1998, 70, 245-279.
(5) Kim H.; Rafiuddin-Shah, M.; Tu, H. C.; Jeffers, J. R.; Zambetti, G.
P.; Hsieh, J. J.; Cheng, E. H. Nat. Cell Biol. 2006, 8, 1348-1358.
(6) Willis, S. N.; Fletcher, J. I.; Kaufmann, T.; van Delft, M. F.; Chen,
L.; Czabotar, P. E.; Ierino, H.; Lee, E. F.; Fairlie, W. D.; Bouillet,
P.; Strasser, A.; Kluck, R. M.; Adams, J. M.; Huang, D. C. Apoptosis
initiated when BH3 ligands engage multiple Bcl-2 homologs, not
Bax or Bak. Science 2007, 315, 856-859.
(7) Petros, A. M.; Medek, A.; Nettesheim, D. G.; Kim, D. H.; Yoon, H.
S.; Swift, K.; Matayoshi, E. D.; Oltersdorf, T.; Fesik, S. W. Solution
structure of the antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci.
U.S.A. 2001, 98, 3012-3017.
(8) Sattler, M.; Liang, H.; Nettesheim, D.; Meadows, R. P.; Harlan, J.
E.; Eberstadt, M.; Yoon, H. S.; Shuker, S. B.; Chang, B. S.;
(23) Hirao, I.; Yamaguchi, M.; Hamada, M. A convenient synthesis of
2- and 2,3-substituted 4H-chromen-4-ones. Synthesis 1984, 12,
1076-1078.
JM070383C