C O M M U N I C A T I O N S
selectivity observed with allenes 2b and 2c (entries 8-11) suggests
addition across the more hindered double bond.
Acknowledgment. Support for this work was provided by the
National Institute of General Medical Sciences (GM-063755). We
also thank the NIGMS (GM-072566), NSF (CAREER CHE-
0134704), Amgen, Boehringer Ingelheim, Bristol Myers-Squibb,
GlaxoSmithKline, Johnson & Johnson, Merck Research Labora-
tories, Pfizer, the Sloan Foundation, Wyeth, and the Deshpande
Center (MIT) for generous financial support. We are grateful to
Dr. Li Li for obtaining mass spectrometric data for all compounds
(MIT Department of Chemistry Instrumentation Facility, which is
supported in part by the NSF (CHE-9809061 and DBI-9729592)
and the NIH (1S10RR13886-01)).
The results of a deuterium labeling experiment provided infor-
mation critical to the development of an explanation for these
surprising results. We repeated a previous experiment (entry 8),
using Et3SiD (97% D) in place of Et3SiH (eq 2). Slightly lower
allylic:homoallylic selectivity (89:11) was observed, but 2H-3g had
the same enantiomeric excess, Z/E ratio, and site selectivity as that
of 3g. Deuterium incorporation occurred at a single site and with
>95:5 diastereoselectivity. The configuration was assigned as R
by converting 2H-3g to the known 2-2H-cyclohexylacetic acid,
1
esterifying with methyl (R)-mandelate, and comparing H NMR
Supporting Information Available: Experimental procedures and
data for all new compounds (PDF). This material is available free of
spectra of the product (4) and the corresponding unlabeled ester.17
References
(1) Multicomponent Reactions; Zhu, J., Bienayme´, H., Eds.; Wiley-VCH:
Weinheim, Germany, 2005. (b) Ramo´n, D. J.; Yus, M. Angew. Chem.,
Int. Ed. 2005, 44, 1602-1634.
(2) Nickel: (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119,
9065-9066. (b) Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett. 2000,
2, 4221-4223. (c) Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am.
Chem. Soc. 2003, 125, 3442-3443. (d) Review: Montgomery, J. Angew.
Chem., Int. Ed. 2004, 43, 3890-3908. (e) Rhodium: Jang, H.-Y.;
Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4664-
4668.
(3) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076-8077.
(4) (a) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364-
1367. (b) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2004, 43,
3941-3944.
(5) Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-
VCH: Weinheim, Germany, 2004; Vols. 1-2.
(6) (a) Anwar, U.; Grigg, R.; Rasparini, M.; Sridharan, V. Chem. Commun.
2000, 645-646. (b) Ha, Y.-H.; Kang, S.-K. Org. Lett. 2002, 4, 1143-
1146. (c) Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2004, 6, 2221-
2224. (d) Montgomery, J.; Song, M. Org. Lett. 2002, 4, 4009-4011. (e)
Kang, S.-K.; Yoon, S.-K. Chem. Commun. 2002, 2634-2635. (f) Wu,
M.-S.; Rayabarapu, D. K.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125,
12426-12427.
The results of this experiment can be accounted for by the
sequence of events shown in Scheme 1. Back-bonding likely
induces significant deformation from linearity of the allene, and of
the four isomeric 1:1:1 complexes of Ni, NHC-IPr (L), and allene
2b, only A places the large Ni-L complex on the less hindered
allene face and less substituted double bond. The sense of induction
may be explained by benzaldehyde coordination away from the
methyl group with the Ph group placed between L and (cyclohexyl)-
methylidene, reorganization to allow overlap between a C-Ni bond
and π*, and oxidative addition to give metallacycle B.
Scheme 1
(7) (a) Danheiser, R. L.; Carini, D. J. J. Org. Chem. 1980, 45, 3927-3929.
(b) Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Org. Chem. 1982, 47, 2225-
2227. (c) Marshall, J. A. Chem. ReV. 2000, 100, 3163-3186.
(8) (a) Taylor, D. R.; Wright, D. B. J. Chem. Soc., Perkin Trans. 1 1973,
956-959. (b) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem.
Soc. 1999, 121, 10842-10843. (c) Holemann, A.; Reissig, H.-U. Org.
Lett. 2003, 5, 1463-1466. (d) Takimoto, M.; Kawamura, M.; Mori, M.
Org. Lett. 2003, 5, 2599-2601. (e) Yang, F.-Y.; Shanmugasundaram, M.;
Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc.
2003, 123, 12576-12583.
(9) Coupling of the allene sp carbon with carbonyl groups is much more
common in intramolecular reactions, where geometric constraints of ring
closure play a substantial role. See volume 2 of ref 5 for examples.
(10) (a) See ref 6c for an isolated example of highly enantioselective coupling,
and refs 5 and 7c for enantioselective allenylmetal addition.
(11) For examples of Ni-catalyzed multicomponent coupling reactions of
allenes, see ref 6d-f and (a) Satyanarayana, N.; Alper, H.; Amer, I.
Organometallics 1990, 9, 284-286. (b) Wu, M.-S.; Rayabarapu, D. K.;
Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12426-12427.
We believe that there is a direct link between the selectivity for
the Z alkene geometry and the sense of induction of deuterium
labeling. σ-Bond metathesis between B and Et3SiD could afford
η3-allyl-Ni complex C. Reductive elimination with retention leads
to the observed Z alkene and R configuration at the labeled carbon.
Conversely, the alternative complex (D) gives the opposite sense
of selectivity in both cases (E and S, respectively). Our explanation
for the absence of this product is the severe 1,3-interaction between
the Me and Cy groups present in D.
(12) Established by nOe experiments and comparison to related Z and E allylic
alcohols: (a) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org.
Chem. 2001, 66, 4333-4339. (b) Colby, E. A.; Jamison, T. F. J. Org.
Chem. 2003, 68, 156-166.
(13) Review: Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309.
(14) Ni-NHC-catalyzed aldehyde additions. (a) Alkynes: Mahandru, G. M.;
Liu, G.; Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698-3699. (b)
1,3-Dienes: Sawaki, R.; Sato, Y.; Mori, M. Org. Lett. 2004, 6, 1131-
1133.
Finally, the overall site selectivity avoids formation of the more
congested alkene (Cy vs Me), and this bias appears to be operative
in the transition state of reductive elimination from C.
(15) (a) Gibbs, R.; Bartels, K.; Lee, R. W. K.; Ojamura, W. H. J. Am. Chem.
Soc. 1989, 111, 3717-3725. (b) Shepard, M. S.; Carreira, E. M. J. Am.
Chem. Soc. 1997, 119, 2597-2605. (c) Wender, P. A.; Glorius, F.;
Husfeld, C. O.; Langkopf, E.; Love, J. A. J. Am. Chem. Soc. 1999, 121,
5348-5349. (d) Hu, H.; Smith, D.; Cramer, R. E.; Tius, M. A. J. Am.
Chem. Soc. 1999, 121, 9895-9896. (e) In-depth discussion: Brummond,
K. M.; Kerekes, A. D.; Wan, H. J. Org. Chem. 2002, 67, 5156-5163.
(16) (a) Waters, W. L.; Linn, W. S.; Caserio, M. C. J. Am. Chem. Soc. 1968,
90, 6741-4025. (b) Ikeda, I.; Honda, K.; Osawa, E.; Shiro, M.; Aso, M.;
Kanematsu, K. J. Org. Chem. 1996, 61, 2031-2037. (c) Ma, S.; Ren, H.;
Wei, Q. J. Am. Chem. Soc. 2003, 125, 4817-4830.
In summary, this enantioselective, three-component coupling
occurs by way of a previously unobserved process in allene-
aldehyde reactions and is promoted by a Ni-NHC complex that
transfers the axial chirality of the allene to the product with very
high fidelity. This catalyst also possesses the qualities necessary
to induce a surprising sense and degree of Z/E and site selectivity.
The implementation of this single-step formation of synthetically
useful, silyl-protected Z allylic alcohols in the synthesis of complex
molecules is currently under investigation.
(17) See Supporting Information and (a) Brown, J. M.; Parker, D. Tetrahedron
Lett. 1981, 22, 2815-2818. (b) Fleming, I.; Jones, G. R.; Kindon, N. D.;
Landais, Y.; Leslie, C. P.; Morgan, I. T.; Peukert, S.; Sarkar, A. K. J.
Chem. Soc., Perkin Trans. 1 1996, 1171-1196.
JA0521831
9
J. AM. CHEM. SOC. VOL. 127, NO. 20, 2005 7321