262
M. Makha, C. L. Raston, and A. N. Sobolev
thecalixarenespresentwereidentifiedusing 1HNMRspectroscopy[11]).
Trituration with acetone afforded pure p-phenylcalix[4]arene.
Crystallization
A warm toluene solution of p-phenylcalix[4]arene (20 mg, 0.27 µmol)
and p-carborane (40 mg, 107 µmol) was allowed to slowly evaporate
over a week, affording colourless crystals that were suitable for X-ray
diffraction studies. NMR was used to establish the composition, and cell
dimensions were measured on different crystals to show uniformity of
the crystalline material.
Crystal Data
C52H40O4, M 728.84, tetragonal, space group I41/a, a 31.296(8),
c 15.417(4) Å,V 15100(5) Å3, Dc (Z 16) 1.282 g cm−3; µMo 0.08 mm−1
,
Fig. 3. The interlocking of the columnar arrays of p-phenylcalix-
[4]arene, with each column highlighted with a different shade for
clarity.
T 170 K, MoKα radiation (λ 0.71073 Å), θmax 25◦, Nt 44509, R1 0.129,
wR2 0.251, GoF 1.016 for 3136 reflections with I > 2σ(I). CCDC
290751.
hydrogen-bonding network associated with calix[4]arenes
(O· · ·O distances 2.682, 2.673, 2.650, and 2.763 Å). Each
back-to-back pair of calixarenes is then associated with two
other back-to-back pairs of calixarenes with the principle axis
of the pairs rotated by 90◦ relative to each other (Fig. 2). The
continuous columnar nano-arrays in the solid state have the
cavities of the calixarenes directed away from the principle
axis of the column. Such arrays then lock in with other arrays
through the aforementioned association of phenyl groups of
one calixarene with the cavity of another (Fig. 3). Thus each
columnar nano-array is surrounded by four other such arrays.
The structure of p-phenylcalix[4]arene is compact with
no voids. This is in contrast to the structure of sublimed
p-But-calix[4]arene which has large lattice voids of approxi-
mately 235 Å3 which are associated with pairs of calixarene
cavities.[6,14] Here the globular tert-butyl substituents in the
para position are seemingly too large to reside in a cavity
of another calixarene, and this results in inefficient packing.
It is also interesting to compare the present structure with
that of the parent calix[4]arene with hydrogen atoms in the
para positions.[15] In this case the shallow-cavity calixarenes
assembles into cyclic trimeric arrays with the phenol ring of
one calixarene directed into the cavity of another calixarene.
Increasing the depth of the cavity in the present case results
in dimeric association of the calixarenes and overall efficient
packing in the extended structure (Fig. 3).
Detailed experimental conditions and characterization data,
1
including H NMR data are available from the authors or,
until April 2011, the Australian Journal of Chemistry.
Acknowledgment
We gratefully acknowledged support of this work by the
Australian Research Council.
References
[1] J. O. Metzger, Angew. Chem. Int. Ed. 1998, 37,
2975. doi:10.1002/(SICI)1521-3773(19981116)37:21<2975::
AID-ANIE2975>3.0.CO;2-A
[2] R. Noyori, Chem. Commun. 2005, 1807. doi:10.1039/B502713F
[3] (a) C. B. Smith, C. L. Raston, A. N. Sobolev, Green Chem. 2005,
7, 650. doi:10.1039/B507581P
(b) J. Chen, S. K. Spear, J. G. Huddleston, R. D. Rogers, Green
Chem. 2005, 7, 64. doi:10.1039/B413546F
[4] D. Witt, J. Dziemidowicz, J. Rachon, Heteroatom Chem. 2004,
15, 155. doi:10.1002/HC.10229
[5] E. da Silva, A. N. Lazar, A. W. Coleman, J. Drug Delivery Sci.
Technol. 2004, 14, 3.
[6] J. L. Atwood, L. J. Barbour, A. Jerga,Angew. Chem. Int. Ed. 2004,
43, 2948. doi:10.1002/ANIE.200353559
[7] K. D. Schierbaum, Sensors Actuators B: Chem. 1994, 18, 71.
doi:10.1016/0925-4005(94)87059-4
[8] (a) F. Hamada, S. G. Bott, G. W. Orr, A. W. Coleman,
H. Zhang, J. L. Atwood, J. Incl. Phenom. 1990, 9, 195.
doi:10.1007/BF01053117
(b) C. D. Gutsche, P. F. Pagoria, J. Org. Chem. 1985, 50, 5795.
doi:10.1021/JO00350A071
[9] J. L. Atwood, L. J. Barbour, M. W. Heaven, C. L. Raston, Angew.
Chem. Int. Ed. 2003, 42, 3254. doi:10.1002/ANIE.200351033
[10] M. Makha, C. L. Raston, Tetrahedron Lett. 2001, 42, 6215.
doi:10.1016/S0040-4039(01)01218-7
[11] M. Makha, C. L. Raston, B. W. Skelton, Green Chem. 2004, 6,
158. doi:10.1039/B315204A
[12] R. K. Juneja, K. D. Robinson, C. P. Johnson, J. L. Atwood, J. Am.
Chem. Soc. 1993, 115, 3818. doi:10.1021/JA00062A075
[13] M. Makha, M. J. Hardie, C. L. Raston, Chem. Commun. 2002,
1446. doi:10.1039/B203688F
[14] (a) J. L. Atwood, L. J. Barbour, A. Jerga, Chem. Commun. 2002,
2952. doi:10.1039/B209718B
(b) J. L. Atwood, L. J. Barbour, G. O. Lloyd, P. K. Thallapally,
Chem. Commun. 2004, 922. doi:10.1039/B402452B
[15] J. L. Atwood, L. J. Barbour, A. Jerga, Science 2002, 296, 2367.
doi:10.1126/SCIENCE.1072252
To conclude, we have established a novel synthesis of
p-phenylcalix[4]arene in modest yield using the principles
of green chemistry, and have established how it can self-
associate in the solid state through carborane mediation.
Given the availability of the calixarene, its potential in
supramolecular chemistry and allied fields is set to flourish
as are its chemically elaborated analogues.
Experimental
Synthesis of p-Phenylcalix[n]arenes
A mixture of p-phenylphenol and 37% aqueous formaldehyde solution
were heated to 110◦C under an inert atmosphere followed by addition
of base (KOH, molar ratio 0.18). After one hour 20 mL of PEG300 was
addedandthetemperatureraisedtoca. 220◦Cforonehour. Oncoolingto
room temperature 100 mL of 1/1 (1 M) HCl/MeOH solution was added
affording the calixarenes as a light brown solid which were collected and
washed with water to remove any residual PEG300.The mixture was then
refluxed in MeOH and the products collected as a white solid (the ratio of