ChemComm
Communication
4 C. Hansch, P. G. Sammes and J. B. Taylor, in Comprehensive
Medicinal Chemistry, Pergamon Press, Oxford, 1990, vol. 2, ch. 7.1.
5 (a) W. Yuan, K. Fearson and M. H. Gelb, J. Org. Chem., 1989, 54, 906;
(b) S. Chandrasekhar and S. Mohapatra, Tetrahedron Lett., 1998, 39, 695.
6 (a) S. W. Wright and K. N. Hallstrom, J. Org. Chem., 2006, 71, 1080;
(b) J. D. Wilden, L. Geldeard, C. C. Lee, D. B. Judd and S. Caddick,
Chem. Commun., 2007, 1074; (c) S. Caddick, J. D. Wilden and
D. B. Judd, J. Am. Chem. Soc., 2004, 126, 1024; (d) K. Bahrami,
M. M. Khodaei and J. Abbas, Tetrahedron, 2012, 68, 5095;
(e) J. W. Lee, Y. Q. Louie, D. P. Walsh and Y. T. Chang, J. Comb.
Chem., 2003, 5, 330; ( f ) C. G. Frost, J. P. Hartley and D. Griffin,
Synlett, 2002, 1928; (g) J. D. Wilden, D. B. Judd and S. Caddick,
Tetrahedron Lett., 2005, 46, 7637; (h) K. Bahrami, M. M. Khodaei and
M. Soheilizad, Tetrahedron Lett., 2010, 51, 4843; (i) K. Bahrami,
M. M. Khodaei and M. Soheilizad, J. Org. Chem., 2009, 74, 9287.
7 (a) K. K. Andersen, in Comprehensive Organic Chemistry, ed.
D. N. Jones, Pergamon Press, Oxford, 1979, vol. 3; (b) R. Sridhar,
B. Srinivas, V. P. Kumar, M. Narender and K. R. Rao, Adv. Synth.
Catal., 2007, 349, 1873; (c) M. Harmata, P. Zheng, C. Huang,
M. G. Gomes, W. Jing, K. Ranyanil, G. Balan and N. L. Calkins,
J. Org. Chem., 2007, 72, 683.
8 For recent work on Pd-catalyzed sulfonamide coupling, see: (a) J. Yin
and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 6043; (b) G. Burton,
P. Cao, G. Li and R. Rivero, Org. Lett., 2003, 5, 4373; (c) B. R. Rosen,
J. C. Ruble, T. J. Beauchamp and A. Navarro, Org. Lett., 2011,
13, 2564; (d) J. Yin and S. L. Buchwald, Org. Lett., 2000, 2, 1101.
9 For recent work on Cu-catalyzed sulfonamide coupling, see:
(a) J. Baffoe, M. Y. Hoe and B. B. Toure, Org. Lett., 2010, 12, 1532;
(b) W. Deng, L. Liu, C. Zhang, M. Liu and Q. Guo, Tetrahedron Lett.,
2005, 46, 7295; (c) H. He and Y. Wu, Tetrahedron Lett., 2003,
44, 3385; (d) D. Audisio, S. Messaoudi, J. F. Peyrat, J. D. Brion and
M. Alami, J. Org. Chem., 2011, 76, 4995.
10 (a) A. J. A. Watson, A. C. Maxwell and J. M. J. Williams, J. Org. Chem.,
2011, 76, 2328; (b) M. Zhu, K. Fujita and R. Yamaguchi, Org. Lett.,
2010, 12, 1336; (c) S. Shekhar, T. B. Dunn, B. J. Kotecki,
D. K. Montavon and S. C. Cullen, J. Org. Chem., 2011, 76, 4552.
11 (a) B. Kalita, A. A. Lamar and K. M. Nicholas, Chem. Commun., 2008,
4291; (b) B. Xiao, T. J. Gong, J. Xu, Z. J. Liu and L. Liu, J. Am. Chem.
Soc., 2011, 133, 1466.
12 For selected examples, see: (a) C. Liu, H. Zhang, W. Shi and A. Lei,
Chem. Rev., 2011, 111, 1780; (b) I. Nakamura and Y. Yamamoto,
Chem. Rev., 2004, 104, 2127; (c) T. Punniyamurthy, S. Velusamy and
J. Iqbal, Chem. Rev., 2005, 105, 2329; (d) E. M. Beccalli, G. Broggini,
M. Martinelli and S. Sottocornola, Chem. Rev., 2007, 107, 5318;
(e) T. Hamada, X. Ye and S. S. Stahl, J. Am. Chem. Soc., 2008,
130, 835.
Scheme 1 Possible mechanism.
obtained when aliphatic sulfinic acid sodium was used as the starting
material (entries 5–7). However, sodium trifluoromethanesulfonate
was not a suitable substrate for this transformation (entry 8), which
suggested that the electron-withdrawing groups might have an
influence on the product formation.
To investigate the reaction mechanism, several experiments were
performed.14 No sulfonamide product was detected in the presence of
the radical scavenger TEMPO or BHT, which indicated that a radical
pathway should be involved.15 According to the above results, a possible
mechanism is proposed in Scheme 1. Intermediate A is initially
generated by the coordination of copper to the sodium sulfinate.16,17
Release of CuBr produces the sulfonyl free radical intermediate.18
Coordination of copper to the amine produces intermediate B, which
combines with the sulfonyl free radical to give the desired product with
release of CuBr.19 Finally, the CuI can be oxidized by DMSO or O2 to
generate the CuII species.20 When we try to trap the radical inter-
molecularly by using 1,1-diphenylethylene or a tethered vinylcyclo-
propane in the presence or absence of amine, we did not observe
the radical coupling products. Therefore, an organometallic path-
way cannot be overlooked for this transformation.14
In conclusion, we have developed an efficient Cu-catalyzed
sulfonamide formation from sodium sulfinates and amines.
The reaction presents a convenient method with good func-
tional group tolerance for the synthesis of sulfonamides in
medicinal chemistry and materials science. Further studies are
underway to provide insight into the mechanism and synthetic
applications of this reaction.
13 (a) L. Huang, H. Jiang, C. Qi and X. Liu, J. Am. Chem. Soc., 2010,
132, 17652; (b) L. Huang, H. Jiang, Q. Wang and X. Liu, Angew.
Chem., Int. Ed., 2012, 51, 5696; (c) X. Ji, H. Huang, Y. Li, H. Chen and
H. Jiang, Angew. Chem., Int. Ed., 2012, 51, 5696; (d) X. Li, L. Huang,
H. Chen, W. Wu, H. Huang and H. Jiang, Chem. Sci., 2012, 3, 3463.
14 See the ESI† for details.
We are grateful to the National Natural Science Foundation
of China (21172076 and 20932002), the National Basic Research
Program of China (973 Program) (2011CB808600), the Changjiang
Scholars and Innovation Team Project of Ministry of Education, the
Guangdong Natural Science Foundation (10351064101000000),
China Postdoctoral Science Foundation (2011M501318) and
the Fundamental Research Funds for the Central Universities
(2012ZP0003).
15 (a) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science, 2012,
338, 647; (b) M. M. Melzer, S. Mossin, X. Dai, A. M. Bartell,
P. Kapoor, K. Meyer and T. H. Warren, Angew. Chem., Int. Ed.,
2010, 49, 904; (c) A. J. Paine, J. Am. Chem. Soc., 1987, 109, 1496;
(d) G. O. Jones, P. Liu, K. N. Houk and S. L. Buchwald, J. Am. Chem.
Soc., 2010, 132, 6205; (e) N. P. Mankad, W. E. Antholine,
R. E. Szilagyi and J. C. Peters, J. Am. Chem. Soc., 2009, 131, 3878;
( f ) C. Tang and N. Jiao, J. Am. Chem. Soc., 2012, 134, 18924;
(g) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem.,
Int. Ed., 2011, 50, 11062; (h) X. Chen, X. Hao, C. E. Goodhue and
J. Yu, J. Am. Chem. Soc., 2006, 128, 6790.
16 J. Chen, Y. Sun, B. Liu, D. Liu and J. Cheng, Chem. Commun., 2012,
449.
Notes and references
17 X. Yu, X. Li and B. Wan, Org. Biomol. Chem., 2012, 10, 7479.
18 M. P. Doyle, M. S. Shanklin, S. M. Oon, H. Q. Pho, F. R. Heide and
W. R. Veal, J. Org. Chem., 1988, 53, 3386.
19 R. Giri and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 15860.
20 (a) A. Kar, I. A. Sayyed, W. F. Lo, H. M. Kaiser, M. Beller and
M. K. Tse, Org. Lett., 2007, 9, 3405; (b) R. S. Xu, J. P. Wan, H. Mao and
Y. J. Pan, J. Am. Chem. Soc., 2010, 132, 15531; (c) Y. Jinbo, H. Kondo,
M. Taguchi, F. Sakamoto and G. Tsukamoto, J. Org. Chem., 1994,
59, 6057; (d) X. Creary and A. Losch, Org. Lett., 2008, 10, 4975;
(e) W. L. Ge and Y. Y. Wei, Green Chem., 2012, 14, 2066.
1 (a) M. Banerjee, A. Poddar, G. Mitra, A. Surolia, T. Owa and
B. Bhattacharyya, J. Med. Chem., 2005, 48, 547; (b) A. Natarajan,
Y. Guo, F. Harbinski, Y. H. Fan, H. Chen, L. Luus, J. Diercks,
H. Aktas, M. Chorev and J. A. Halperin, J. Med. Chem., 2004,
47, 4979.
2 H. Yoshino, N. Ueda, J. Niijima, H. Sugumi, Y. Kotake, N. Koyanagi,
K. Yoshimatsu, M. Asada, T. Watanabe, T. Nagasu, K. Tsukahara,
A. Iijima and K. Kitoh, J. Med. Chem., 1992, 35, 2496.
3 R. Pandya, T. Murashima, L. Tedeschi and A. G. M. Barrett, J. Org.
Chem., 2003, 68, 8274.
c
6104 Chem. Commun., 2013, 49, 6102--6104
This journal is The Royal Society of Chemistry 2013