S. Ju¨rs, J. Thiem / Tetrahedron: Asymmetry 16 (2005) 1631–1638
1637
20
546
J2,3 = 5.9 Hz), 7.08–7.42, 7.87–7.95 (2 · m, 30H, Ar)
ppm. 13C NMR (100 MHz, C6D6): d = 26.62 (1C, Me),
27.29 (3C, tert-butyl), 28.26 (1C, Me), 64.48 (1C, C-8),
69.21 (1C, C-60), 72.03 (1C, C-50), 73.13 (1C, C-4),
73.27, 73.61, 75.40, 75.57 (4C, OCH2), 76.71, 77.30
(2C, C-3, C-5), 78.34, 78.47 (2C, C-7, C-40), 80.32 (1C,
C-6), 81.07 (1C, C-20), 82.24 (1C, C-30), 95.84 (1C,
C-10), 109.72 (1C, CMe2), 116.67 (1C, C-1), 127.52–
128.57, 129.90, 129.99, 135.31, 136.08, 136.47 (37C,
C-2, Ar) ppm.
½a ¼ þ56:0 (c 0.25, EtOAc); C52H58O12S, 907.2;
MALDI-TOF: [M+Na]+: 930, [M+K]+: 946; H NMR
(400 MHz, C6D6): d = 1.17, 1.39 (2 · s, 2 · 3H,
2 · Me), 1.78 (s, 3H, Ts–Me), 3.26 (ddd, 1H, H-7,
J6,7 = 9.4, J7,8a = 2.3, J7,8b = 5.4 Hz), 3.54–3.58 (m, 1H,
H-3, J2,3 = 5.9, J3,4 = 2.4 Hz), 3.59–3.62 (m, 2H, H-4,
1
H-20, J3,4 = 2.4, J1 ,2 = 3.8, J2 ,3 = 9.4 Hz), 3.94–4.04
(m, 4H, H-6, H-40, H-60a/b, J5,6 = 6.4, J6,7 = 9.4,
0
0
0
0
J3 ,4 = J4 ,5 = 9.4 Hz), 4.11–4.17 (m, 2H, H-5, H-50,
0
0
0
0
J5,6 = 6.4, J4 ,5 = 9.4 Hz), 4.22 (dd ꢁ t, 1H, H-30,
0
0
0
0
0
0
J2 ,3 = J3 ,4 = 9.4 Hz), 4.34 (dd, 1H, H-8b, J7,8b = 5.4,
J8a,8b = 10.5 Hz), 4.38 (1, H, OCH2), 4.47–4.52 (m, 2H,
H-8a, OCH2, J7,8a = 2.3, J8a,8b = 10.5 Hz), 4.58, 4.67,
4.75, 4.95 (4 · d, 4H, OCH2), 4.99–5.05 (m, 2H, H-1b,
OCH2, J1a,1b = 1.5, J1b,2 = 10.5 Hz), 5.10 (d, 1H,
OCH2), 5.18 (ddd ꢁ dt, 1H, H-1a, J1a,1b = 1.5,
4.15. (3,7-Anhydro-1,2,6-trideoxy-4,5-di-O-isopropylid-
ene-D-glycero-D-galacto-oct-1-enitol-6-yl)-20,30,40,60-
tetra-O-benzyl-a-D-glucopyranoside 19
To a solution of 18 (157 mg, 158 lmol) in THF (7 mL)
was added a solution of tetrabutylammonium fluoride
in THF (0.19 mL, 1 M, 190 lmol) at 0 ꢁC. The solution
was stirred at room temperature for 4 days. Evaporation
of the solvent and chromatography of the residue
J1a,2 = 17.0 Hz), 5.80 (d, 1H, H-10, J1 ,2 = 3.8 Hz),
5.87–5.96 (m, 1H, H-2, J2,3 = 5.9 Hz), 6.63 (d, 2H, Ar),
7.06–7.21 (m, 12H, Ar), 7.33, 7.41 (2 · d, 8H, Ar),
7.82 (d, 2H, Ar) ppm. 13C NMR (100 MHz, C6D6):
d = 21.14 (1C, Ts–Me), 26.39, 28.10 (2C, 2 · Me),
69.45 (1C, C-60), 69.82 (1C, C-8), 72.33 (1C, C-50),
73.26 (1C, C-6), 73.41, 73.62 (2C, OCH2), 75.37 (1C,
OCH2), 75.55 (1C, C-7), 75.66 (1C, OCH2), 76.41,
80.85 (2C, C-4, C-20), 77.25 (1C, C-3), 78.43 (1C, C-
40), 79.62 (1C, C-5), 82.20 (1C, C-30), 96.22 (1C, C-10),
116.94 (1C, C-1), 127.64–128.73, 129.88 (30C, Ar),
134.40 (1C, C-2) ppm.
0
0
(petroleum ether/ethyl acetate 4:1) gave 73 mg of 19
20
546
(97 lmol, 61%) as a yellowish syrup. ½a ¼ þ66:0 (c
0.5, EtOAc); C45H52O10, 753.0; MALDI-TOF:
[M+Na]+: 776, [M+K]+: 792; 1H NMR (500 MHz,
C6D6): d = 1.22, 1.50 (2 · s, 2 · 3H, 2 · Me), 2.20 (br
s, 1H, 8-OH), 3.12 (ddd, 1H, H-7, J6,7 = 9.5,
J7,8a = 2.5, J7,8b = 3.8 Hz), 3.62 (dd, 1H, H-20,
0
0
0
0
J1 ,2 = 3.8, J2 ,3 = 9.8 Hz), 3.68–3.70 (m, 2H, H-3,
H-4, J2,3 = 6.1 Hz), 3.75–3.79 (m, 3H, H-40, H-60a/b,
0
0
0
0
0
0
0
0
J3 ,4 = J4 ,5 = 9.8, J5 ,6 a = J5 ,6 b = 3.2 Hz), 3.89 (br d,
1H, H-8b, J7,8b = 3.8 Hz), 3.95 (br d, 1H, H-8a,
4.17. (3,7-Anhydro-8-bromo-1,2,6,8-tetradeoxy-4,5-di-
O-isopropylidene-D-glycero-D-galacto-oct-1-enitol-6-yl)-
20,30,40,60-tetra-O-benzyl-a-D-glucopyranoside 21
J7,8a = 2.5 Hz), 4.14 (ddd ꢁ dt, 1H, H-50, J4 ,5 = 9.8,
0
0
J5 ,6 a = J5 ,6 b = 3.2 Hz), 4.18–4.22 (m, 2H, H-5, H-30,
0
0
0
0
0
0
0
0
J5,6 = 6.9, J2 ,3 = J3 ,4 = 9.8 Hz), 4.26 (dd, 1H, H-6,
J5,6 = 6.9, J6,7 = 9.5 Hz), 4.35, 4.43, 4.59, 4.63, 4.77,
4.87, 4.95 (7 · d, 7H, OCH2), 5.07–5.10 (m, 2H,
OCH2, H-1b, J1a,1b = 1.3, J1b,2 = 10.4 Hz), 5.23 (d, 1H,
H-1a, J1a,1b = 1.3, J1a,2 = 17.3 Hz), 5.88 (d, 1H, H-10,
A solution of 20 (52 mg, 57 lmol) and NaBr (59 mg,
573 lmol) in DMF (4 mL) was heated to 70 ꢁC and stir-
red overnight. After evaporation of the solvent, the res-
idue was dissolved in dichloromethane and the solution
filtrated. Evaporation of the solvent yielded 59 mg of the
raw product 21 accompanied by sodium tosylate. The
residue was directly used without further purification
for the subsequent elimination.
0
0
J1 ,2 = 3.8 Hz), 6.04–6.11 (m, 1H, H-2, J1a,2 = 17.3,
J1b,2 = 10.4, J2,3 = 6.1 Hz), 7.06–7.45 (m, 20H, Ar)
ppm. 13C NMR (100 MHz, C6D6): d = 26.58, 28.30
(2C, 2 · Me), 62.51 (1C, C-8), 69.52 (1C, C-60), 71.98
(1C, C-50), 73.08 (1C, OCH2), 73.32 (1C, C-6), 73.55
(1C, OCH2), 75.31, 75.63 (2C, OCH2), 76.82, 77.70,
77.95, 78.53 (4C, C-3, C-4, C-7, C-40), 80.42, 80.90,
82.38 (3C, C-5, C-20, C-30), 96.14 (1C, C-10), 109.70
(1C, CMe2), 117.00 (1C, C-1), 127.55–128.60, 139.27,
139.86 (24C, Ar), 135.05 (1C, C-2) ppm.
4.18. (3,7-Anhydro-1,2,6,8-tetradeoxy-4,5-di-O-isoprop-
ylidene-D-galacto-octo-1,7-dienitol-6-yl)-20,30,40,60-tetra-
O-benzyl-a-D-glucopyranoside 22
To a solution of raw product 21 dissolved in pyridine
(3 mL), was added silver fluoride (47 mg, 370 lmol).
The solution was stirred under light exclusion at room
temperature. On the next day, a second portion of silver
fluoride was added and stirring continued for 1 day until
TLC showed complete conversion of bromide 21. After
filtration, co-distillation with toluene and evaporation of
the solvents chromatography of the residue (petroleum
4.16. [3,7-Anhydro-8-O-(4-toluenesulfonyl)-1,2,6-tride-
oxy-4,5-di-O-isopropylidene-D-glycero-D-galacto-oct-1-
enitol-6-yl]-20,30,40,60-tetra-O-benzyl-a-D-glucopyrano-
side 20
To a solution of 19 (63 mg, 84 lmol) in dry pyridine
(4 mL) was added a catalytic amount of 4-dimethylami-
nopyridine (DMAP) and tosylcohrlide (19 mg,
100 lmol). The solution was stirred at room tempera-
ture for 5 days with severalextra additions of tosylchlo-
ride untilthe alrgest part of starting materialhad
reacted. Evaporation of the solvent and chromatogra-
phy of the residue (petroleum ether/ethyl acetate 6:1)
gave 63 mg of 20 (69 lmol, 83%) as a colourless syrup.
ether/ethylacetate 10:1) gave 9 mg of
22 (12.2
lmol, 21% via two steps) as a colourless syrup.
20
D
½a ¼ þ14:9 (c 0.5, CHCl3); C45H50O9, 735.0; MALDI-
TOF: [M+Na]+: 758, [M+K]+: 774; 1H NMR
(400 MHz, C6D6): d = 1.17, 1.50 (2 · s, 2 · 3H,
2 · Me), 3.51 (dd, 1H, H-20, J1 ,2 = 3.7, J2 ,3 = 9.4 Hz),
0
0
0
0
3.67 (dd, 1H, H-60b, J5 ,6 b = 1.8, J6 a,6 b = 10.7 Hz),
0
0
0
0
3.78 (dd, 1H, H-60a, J5 ,6 a = 3.6, J6 a,6 b = 10.7 Hz),
0
0
0
0
3.90 (dd ꢁ t, 1H, H-40, J3 ,4 = J4 ,5 = 9.4 Hz), 4.09 (dd,
0
0
0
0