10.1002/anie.202004354
Angewandte Chemie International Edition
RESEARCH ARTICLE
Am. Chem. Soc. 2012, 134, 15497–15504; b) J. L. Olivares-Romero, Z. Li,
H. Yamamoto, J. Am. Soc. Chem. 2013, 135, 3411–3413; For examples
of non-enzymatic catalytic chiroablative KR of tertiary alcohols, see: c) S.-
Y. Tosaki, K. Hara, V. Gnanadesikan, H. Morimoto, S. Harada, M. Sugita,
N. Yamagiwa, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2006, 128,
11776–11777; d) R. Shintani, K. Takatsu, T. Hayashi, Org. Lett. 2008, 10,
6, 1191–1193.
Larionov, M. Mahesh, A. C. Spivey, Y. Wei, H. Zipse, J. Am. Chem. Soc.
2012, 134, 9390–9399; d) C. E. Cannizzaro, K. N. Houk, J. Am. Chem.
Soc. 2002, 124, 7163–7169; e) R. C. Johnston, P. H.-Y. Cheong, Org.
Biomol. Chem. 2013, 11, 5057–5064.
[14] See the Supporting Information for more details.
[15] Selectivity factor (s) is the most commonly used metric to report the
efficiency of a KR; is defined as the rate constant for the fast reacting
enantiomer divided by the rate constant for the slow reacting enantiomer
(s = kfast/kslow) and is calculated using the reaction conversion and either
[7] For selected other examples of NHC-catalyzed KR of alcohols, see: a) Y.
Suzuki, K. Yamauchi, K. Muramatsu, M. Sato, Chem. Commun. 2004,
2770–2771; b) T. Kano, K. Sasaki, K. Maruoka, Org. Lett. 2005, 7, 1347–
1349; c) S. Kuwano, S. Harada, B. Kang, R. Oriez, Y. Yamaoka, K.
Takasu, K. Yamada, J. Am. Chem. Soc. 2013, 135, 11485–11488; d) S.
Lu, S. B. Poh, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 11041–11045;
e) B. Liu, J. Yan, R. Huang, W. Wang, Z. Jin, G. Zanoni, P. Zheng, S.
Yang, Y. R. Chi, Org. Lett. 2018, 20, 3447–3450; f) J. Bie, M. Lang, J.
Wang, Org. Lett. 2018, 20, 5866–5871.
the ee of the recovered substrate {s
=
ln[(1−c)(1−eesubstrate)]
/
ln[(1−c)(1+eesubstrate)]} or ee of the reaction product {s
=
ln[(1−c(1+eeproduct)] / ln[(1−c(1−eeproduct)]}. See ref. 3 for more details.
[16] For the KR of benzyl ester 8, extended π–π interactions between the
benzyl substituent and the catalyst may provide further stabilization of the
acylation transition state. See Figure 3b for proposed transition state
structures.
[8] J. Merad, J.-M. Pons, O. Chuzel, C. Bressy, Eur. J. Org. Chem. 2016,
2016, 5589–5610.
[17] C. M. Young, A. Elmi, D. J. Pascoe, R. K. Morris, C. McLaughlin, A. M.
Woods, A. B. Frost, A. de la Houpliere, K. B. Ling, T. K. Smith, A. M. Z.
Slawin, P. H. Willoughby, S. L. Cockroft, A. D. Smith, Angew. Chem. Int.
Ed. 2020, 59, 3705–3710; Angew. Chem. 2020, 132, 3734–3739.
[18] Both enantiomers are available from Apollo Scientific: (2S,3R) CAS Reg.
No. [1203507-02-1]; (2R,3S) CAS Reg. No. [1699751-03-5].
[9] A. S. Burns, A. J. Wagner, J. L. Fulton, K. Young, A. Zakarin, S. D.
Rychnovsky, Org. Lett. 2017, 19, 2953–2956.
[10] a) V. B. Birman, L .Guo, Org. Lett. 2006, 8, 4859–4861; b) I. Shiina, K.
Nakata, Tetrahedron Lett. 2007, 48, 8314–8317; c) V. B. Birman, X. Li,
Org. Lett. 2008, 10, 1115–1118; d) I. Shiina, K. Nakata, M. Sugimoto, Y.
Onda, T. Ikzumi, K. Ono, Heterocycles 2009, 77, 801–810; e) Y. Zhang, V
B. Birman, Adv. Synth. Catal. 2009, 351, 2525–2529; f) Q. Hu, H. Zhou, X.
Geng, P. Chen, Tetrahedron 2009, 65, 2232–2238; g) H. Zhou, Q. Hu, P.
Chen, Tetrahedron 2010, 66, 6494–6499; h) I. Shiina, K. Nakata, K. Ono,
M. Sugimoto, A. Sekiguchi, Chem. Eur. J. 2010, 16, 167–172; i) K.
Nakata, A. Sekiguchi, I. Shiina, Tetrahedron: Asymmetry 2011, 22, 1610–
1619; j) I. Shiina, K. Ono, K. Nakata, Chem. Lett. 2011, 40, 147–149; k) D.
Belmessieri, C. Joannesse, P. A. Woods, C. MacGregor, C. Jones, C. D.
Campbell, C. P. Johnson, N. Duguet, C. Concellón, R. A. Bragg, A. D.
Smith, Org. Biomol. Chem. 2011, 9, 559–570; l) X. Li, H. Jiang, E. W.
Uffman, L. Guo, Y. Zhang, X. Yang, V. B. Birman, J. Org. Chem. 2012, 77,
1722–1737; m) K. Nakata, K. Gotoh, K. Ono, K. Futami, I. Shiina, Org.
Lett. 2013, 15, 1170–1173; n) I. Shiina, K. Ono, T. Nakahara, Chem.
Commun. 2013, 49, 10700–10702; o) S. F. Musolino, O. S. Ojo, N. J.
Westwood, J. E. Taylor, A. D. Smith, Chem. Eur. J. 2016, 22, 18916–
18922; p) K. Nakata, E. Tokumaru, T. Saitoh, T. Nakahara, K. Ono, T.
Murata, I. Shiina, Heterocycles 2017, 95, 277–289; q) T. Murata, T.
Kawanishi, A. Sekiguchi, R. Ishikawa, K. Ono, K. Nakata, I. Shiina,
Molecules 2018, 23, 2003–2021.
[19] a) J. A. Hirsch in Topics in Stereochemistry, Vol. 1 (Eds.: N. L. Allinger, E.
L. Eliel), Wiley, New York, 1967, pp. 199–217; b) M. Charton, J. Am.
Chem. Soc. 1975, 97, 1552–1556; c) M. Charton, J. Org. Chem. 1976, 41,
2217– 2220; d) H. Förster, F. Vögtle, Angew. Chem. Int. Ed. Engl. 1977,
16, 429–441; e) G. Bott, L. D. Field, S. Sternhell, J. Am. Chem. Soc. 1980,
102, 5618–5626.
[20] Due to the low enantiodiscrimination observed for alcohols 26 and 27, the
absolute configuration of the products could not be unambiguously
determined, or inferred by analogy.
[21] a) M. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev. 2003, 103, 3401–3429;
b) A. F. Trindade, P. M. P. Gois, C. A. M. Alfonso, Chem. Rev. 2009, 109,
418–514; c) T. E. Kristensen, T. Hansen, Eur. J. Org. Chem. 2010, 3179–
3204; d) B. Altava, M. I. Burguete, E. Garcia-Verdugo, S. V. Luis, Chem.
Soc. Rev. 2018, 47, 2722–2771.
[22] a) C. Rodríguez-Escrich, M. A. Pericàs, Eur. J. Org. Chem. 2015, 1173–
1188; b) C. Rodríguez-Escrich, M. A. Pericàs, Chem. Rec. 2019, 19
1872–1890; c) T. Yu, Z. Ding, W. Nie, J. Jiao, H. Zhang, Q. Zhang, C.
Xue, X. Duan, Y. M. A. Yamada, P. Li, Chem. Eur. J. 2020, 26, 5729–
5747; d) C. De Risi, O. Bortolini, A. Brandolese, G. Di Carmine, D. Ragno,
A. Massi, React. Chem. Eng. 10.1039/d0re00076k.
[11] a) J. Merad, P. Borkar, F. Caijo, J.-M. Pons, J.-L. Parrain, O. Chuzel, C.
Bressy, Angew. Chem. Int. Ed. 2017, 56, 16052–16056; Angew. Chem.
2017, 129, 16268–16272; b) S. Qu, M. D. Greenhalgh, A. D. Smith, Chem.
Eur. J. 2019, 25, 2816–2823; c) S. Harrer, M. D. Greenhalgh, R. M.
Neyyappadath, A. D. Smith, Synlett 2019, 30, 1555–1560.
[23] a) R. M. Neyyappadath, R. Chisholm, M. D. Greenhalgh, C. Rodríguez-
Escrich, M. A. Pericàs, G. Hähner, A. D. Smith, ACS Catal. 2018, 8,
1067–1075; b) N. R. Guha, R. M. Neyyappadath, M. D. Greenhalgh, R.
Chisholm, S. M. Smith, M. L. McEvoy, C. M. Young, C. Rodríguez-Escrich,
M. A. Pericàs, G. Hähner, A. D. Smith, Green Chem. 2018, 20, 4537–
4546; c) J. Lai, R. M. Neyyappadath, A. D. Smith, M. A. Pericàs, Adv.
Synth. Catal. 2020, 362, 1370–1377.
[12] a) B. R. Beno, K.-S. Yeung, M. D. Bartberger, L. D. Pennington, N. A.
Meanwell, J. Med. Chem. 2015, 58, 4383–4438; b) V. B. Birman, X. Li, Z.
Han, Org. Lett. 2007, 9, 37–40; c) M. E. Abbasov, B. M. Hudson, D. J.
Tantillo, D. Romo, J. Am. Chem. Soc. 2014, 136, 4492–4495; d) E. R. T.
Robinson, D. M. Walden, C. Fallan, M. D. Greenhalgh, P. H.-Y. Cheong,
A. D. Smith, Chem. Sci. 2016, 7, 6919–6927; e) T. H. West, D. M. Walden,
J. E. Taylor, A. C. Brueckner, R. C. Johnson, P. H.-Y. Cheong, G. C.
Lloyd-Jones, A. D. Smith, J. Am. Chem. Soc. 2017, 139, 4366–4375; f) D.
J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139,
15160–15167.
[24] The low selectivities obtained for propargylic alcohols cannot be easily
rationalized by these proposed TSs, and may indicate that the alkyne
substituent operates as a competitive recognition motif in these examples.
[25] For representative examples of hydrolysis (a–b) and reduction (c) of
derivatives closely related to the parent esters 5-8 without loss of
enantiopurity see a) C. Wang, L. Zong, C-H. Tan, J. Am. Chem. Soc.
2015, 137, 10677–10682; b) J-M. Xiang, B-L. Li, Helv. Chem. Acta. 2010,
93, 2015–2022; c) T. Karawasa, R. Oriez, N. Kumagai, M. Shibasaki, J.
Am. Chem. Soc. 2018, 140, 12290–12295.
[13] a) S. Xu, I. Held, B. Kempf, H. Mayr, W. Steglich, H. Zipse, Chem. Eur. J.
2005, 11, 4751–4757; b) V. Lutz, J. Glatthaar, C. Würtele, M. Serafin, H.
Hausmann, P. R. Schreiner, Chem. Eur. J. 2009, 15, 8548–8557; c) E.
[26] The research data underpinning this publication can be found at DOI:
This article is protected by copyright. All rights reserved.