chemistry. However, at -93 °C (internal temperature by
thermocouple measurement), the simply prepared13 prototype
O-sulfamate 3 underwent smooth ortho metalation to the
intermediate lithiated species, which, upon quench with a
variety of electrophiles, provided products 4 in modest to
excellent yields (Table 1).14 Thus, introduction of standard
Table 1. Metalation and Electrophile Quench of Phenyl
O-Sulfamate 3a
Figure 1.
DMG6 have shown the additional features of latency and
cross-coupling capability (2), hence enhancing the synthetic
utility especially in the context of synthesis of meta-
substituted aromatics. Herein we report preliminary results
that demonstrate that the O-sulfamate (3),7 derived by the
8b
8d
union of OCONR2 and SO2NR2 groups, is a new DMG
and cross-coupling partner in the Kumada-Corriu reaction
and that the 2-halo and boron derivatives 4h, 4i, and 4k
undergo Suzuki-Miyaura cross-coupling and provide a new
entry to the benzyne species. In sum, the reported work
provides new methods of general utility in synthetic aromatic
chemistry.
At the outset, the similarity of the O-sulfamate to OTs,9
OMs,10 and especially OTf11 groups raised concerns that it
would suffer, perhaps with similar propensity, ortho anion-
induced benzyne formation,12 an apprehension that was
verified at the -78 °C temperatures commonly used for DoM
a Typical procedure: (1) 1.1 equiv of s-BuLi/TMEDA/THF/-93 °C/45
min/0.2-0.5 M; (2) E+/-93 °C to room temperature.
(entries 1 and 3) and DMG (entry 2) carbon, sulfur (entry
4), silicon (entry 5), and nitrogen (entry 6) electrophiles
proceeds unexceptionally; furthermore, halogen (entries
7-9), tin (entry 10), and boron (entry 11) electrophiles may
be introduced, thus inviting a study of cross-coupling
chemistry. In the event, the 2-iodo O-sulfamate 4i and, in
one case, the corresponding bromo derivative 4h (entry 7),
when subjected to standard Suzuki-Miyaura cross-coupling
conditions with a selection of arylboronic acids 5, afforded
with retention of a new amide DMG for further DoM chemistry; see: Cai,
X.; Brown, S.; Hodson, P.; Snieckus, V. Can. J. Chem. 2004, 82, 195 and
refs cited therein. For the power and versatility of the O-carbamate DMG
in synthesis, see: Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P.
Angew. Chem., Int. Ed. 2004, 43, 2206.
(6) Milburn, R. R.; Snieckus, V. Angew. Chem., Int. Ed. 2004, 43, 892.
Milburn, R. R.; Snieckus, V. Angew. Chem., Int. Ed. 2004, 43, 888.
(7) Review: Benson, G. A.; Spillane, W. J. In The Chemistry of Sulphonic
Acids, Esters, and their DeriVatiVes; Patai, S., Rappoport, Z., Eds.; Wiley:
New York, 1991; p 987 ff. O-Sulfamates are of interest in medicinal
chemistry; see: Spillane, W. J.; McGrath, P.; Brack, C.; O’Byrne, A. B. J.
Org. Chem. 2001, 66, 6313 and refs cited therein. For use of O-sulfamates
in Ru-catalyzed C-H-activated processes, see: Wehn, P. M.; Lee, J.; Du
Bois, J. Org. Lett. 2003, 5, 4823 and refs cited therein. For thia-Fries
rearrangement of O-sulfamates, see: Benson, G. A.; Maughan, P. J.; Shelly,
D. P.; Spillane, W. J. Tetrahedron Lett. 2001, 42, 8729 and refs cited therein.
(8) (a) Metallinos, C.; Nerdinger, S.; Snieckus, V. Org. Lett. 1999, 1,
1183. (b) Sibi, M. P.; Snieckus, V. J. Org. Chem. 1983, 48, 1935. (c) Gray,
M.; Chapell, B. J.; Felding, J.; Taylor, N. J.; Snieckus, V. Synlett 1998,
422. (d) MacNeil, S. L.; Familoni, O. B.; Snieckus, V. J. Org. Chem. 2001,
66, 3662 and refs cited therein.
(9) DoM chemistry of this function has, to the best of our knowledge,
not been achieved. For cross-coupling chemistry, see: Tang, Z.-Y.; Hu,
Q.-S. J. Am. Chem. Soc. 2004, 126, 3058 (Suzuki-Miyaura). Roy, A. H.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704 (Kumada-Corriu).
(10) For Suzuki-Miyaura cross-coupling, see: Percec, V.; Golding, G.
M.; Smidrkal, J.; Weichold, O. J. Org. Chem. 2004, 69, 3447.
(11) For Negishi coupling, see: Quesnelle, C. A.; Familoni, O. B.;
Snieckus, V. Synlett 1994, 349.
(12) Benzyne generation may be achieved by elimination from 1,2-
dihalides; see: Wittig, G.; Benz, E. Chem. Ber. 1959, 92, 1999. Franzen,
V.; Joschek, H. I.; Mertz, C. J. Liebigs Ann. Chem. 1962, 654, 82. Seyferth,
D.; Menzel, H. H. A. J. Org. Chem. 1965, 30, 649. Brewer, J. P. N.; Heaney,
H. Tetrahedron Lett. 1965, 4709. By DMG-induced deprotonation-halide
elimination, see: Pansegrau, P. D.; Rieker, W. F.; Meyers, A. I. J. Am.
Chem. Soc. 1988, 110, 7178. Clark, R. D.; Caroon, J. M. J. Org. Chem.
1982, 47, 2804. By fluoride-mediated elimination from ortho-TMS aryl
halides and triflates, see: Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem.
Lett. 1983, 1211. Tsukazaki, M.; Snieckus, V. Heterocycles 1992, 33, 533.
Hamura, T.; Hosoya, T.; Yamaguchi, H.; Kuriyama, Y.; Tanabe, M.;
Miyamoto, M.; Yasui, Y.; Matsumoto, T.; Suzuki, K. HelV. Chim. Acta
2002, 85, 3589.
(13) Gupta, S. K. Synthesis 1977, 39.
(14) In an attempt to trap the thermodynamically generated anion,
treatment of 3 under Martin conditions (1g: LiTMP/TMSCl ) 1:2.1:10)
(Krizan, T. D.; Martin, J. C. J. Am. Chem. Soc. 1983, 105, 6155) led to
SM (35%), 4e (41%), and 2,2,6,6-tetramethyl-1-(2-(trimethylsilyl)phenyl)-
piperidine (19%) by GC analysis.
2520
Org. Lett., Vol. 7, No. 13, 2005