In order to assess if the observed reduction of the NO
production could be by macrophages death, the effect on the cell
viability of our compounds was also evaluated (Supporting
information). In Figure 4B it is shown these results expressed as
percentage of cell viability versus control. Compounds 39 and 40
were the only ones with cytotoxic effects on the macrophage line
under examination.
Development Regional Fund A way to achieve Europe,
Operative program Intelligent Growth 2014-2020. ). T.C.C. is
supported by the V Plan Propio of the University of Seville with
a postdoctoral contract as research personnel in training. JSC is a
researcher belonging to the program “Nicolás Monardes” (C-
0059-2018), Servicio Andaluz de Salud, Junta de Andalucía,
Spain. MEPI is a researcher belonging to the program “Nicolás
Monardes” (C1-0038-2019), Servicio Andaluz de Salud, Junta de
Andalucía, Spain. S.M, F.A, L.F and A.R.C. thank Dipartimento
di Farmacia
e Scienze della Salute e della Nutrizione-
Dipartimento di Eccellenza MIUR L 232/2016". Authors also
thank CITIUS (Centro de Investigación, Tecnología e Innovación
de la Universidad de Sevilla) for its important contribution in
recording NMR and Mass spectra.
References and notes
1.
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Interdiscip. Perspect.
Infect. Dis. 2014: 541340.
2.
3.
Lee, H.; Lee, H. Infect. Chemother. 2016, 48, 174-180.
Cano, M. E.; Domínguez, M. A.; Ezpeleta, C.; Padilla, B.;
Ramírez de Arellano, E.; Martínez-Martínez, L. Enferm. Infecc.
Microbiol. Clin. 2008, 26, 220-229.
4.
Mody, L.; Gibson, K. E.; Horcher, A.; Prenovost, K.; McNamara,
S. E.; Foxman, B.; Kaye, K. S.; Bradley, S. Infect. Control Hosp.
Epidemiol. 2015, 36, 1155-1162.
Pogue, J. M.; Cohen, D. A.; Marchaim, D. Clin. Infect. Dis. 2015,
60, 1304–1307.
Hua, X.; Liu, L.; Fang, Y.; Shi, Q.; Li, X.; Chen, Q.; Shi, K.;
Jiang, Y.; Zhou, H.; Yu, Y. Front. Cell. Infect. Microbiol. 2017,
doi: 10.3389/fcimb.2017.00045.
Asif, M.; Alvi1, I. A.; Rehman, S. U. Infect. Drug Resist. 2018,
11, 1249-1260.
Zakeyaha, A. A.; Whitta, J.; Dukea, C.; Gilmoreb, D. F.; Meekerc,
D. G.; Smeltzerc, M. S.; Alama, M. A. Bioorg. Med. Chem. Lett.
2018, 28, 2914–2919
Allison, D.; Delancey, E.; Ramey, H.; Williams, C.; Alsharif, Z.
A.; Al-khattabi, H.; Ontko, A.; Gilmore, D.; Alam, M. A. Bioorg.
Med. Chem. Lett. 2017, 27, 387-392. .
Figure 4. Anti-inflammatory activity of Piperazine-derived
thioureas. Nitrites production (A) and cell viability (B)
assessments after treatment of LPS-stimulated RAW 264.7 cell
line with different concentration of compounds for 24 hours.
5.
6.
In summary, we have evaluated the antibacterial activity of a
collection of 39 piperazine-derived thioureas. All active
compounds showed growth inhibition against 46% of the tested
colistin-resistant A. baumannii clinical strains. The SAR analysis
7.
8.
has indicated that those compounds with
a
3,5-bis-
9.
trifluoromethyl phenyl ring at the thiourea function (12, 28, 36,
37, 40 and 41) were the most effective. Their potent activity, no
cytotoxicity, anti-inflammatory activity and easy synthetic
accessibility allow us to consider them as potentially strong
candidates for development of new anti-Acinetobacter agents.
The optimization process will be focused on improving their
potency as both antibacterial and anti-inflammatory agents. They
potentially could be used as adjuvants in combination therapy in
order to restore the efficacy of current employed antibiotics in the
clinical setting.
10. Nural, Y.; Gemili, M.; Ulger, M.; Sari, H.; c, De Coen, L. M.;
Ertan Sahin, E. Bioorg. Med. Chem. Lett. 2018, 28, 942-946.
11. Christoff, R. M.; Murray, G. L.; Kostoulias, X. P.; Peleg, A. Y.;
Abbott, B. M. Bioorg. Med. Chem. Lett 2017, 25, 6267–6272.
12. Verma, A.; Prateek, P.; Thakur, A.; Shukla, P. K. Int. J. Chemtech
Res. 2016, 9, 261-269.
13. Koparde, S.; Hosamani, K. M.; Kulkarni, V.; Joshi, S. D. Chem.
Dat. Collect. 2018, 15/16, 197-206.
14. Al-Wahaibi, L. H.; Hassan, H. M.; Abo-Kamar, A. M.; Ghabbour,
H. A.; El-Emam, A. A. Molecules 2017, 22, 710.
15. Patila, M.; Poyilb, A.N.; Joshic, S.D.: Patild, S.A.; Patila, S.A.;
Bugarine, A. Bioorganic Chemistry 2019, 92, 103217
Declaration of Competing Interest
16. Mazzotta, S.; Marrugal Lorenzo, J. A.; Vega-Holm, M.; Serna-
Gallego, A.; Álvarez-Vidal, J.; Berastegui-Cabrera, J.; Pérez del
Palacio, J.; Díaz, C.; Aiello, F.; Pachón, J.; Iglesias-Guerra, F.;
Vega-Pérez, J. M.; Sánchez-Céspedes, J. Eur. J. Med. Chem.
2020, 185, 111840.
17. Vega-Pérez, J. M.; Periñán, I.; Argandoña, M.; Vega-Holm, M.;
Palo-Nieto, C.; Burgos-Morón, E.; López-Lázaro, M.; Vargas, C.;
Nieto, J. J.; Iglesias-Guerra, F. Eur. J. Med. Chem. 2012, 58, 591-
612.
18. Synthesis of the thiourea derivatives (39-43). To a solution of the
monoacyl derivative (0.75 mmol) in dry dichloromethane (10 mL)
was added the corresponding isothiocyanate (0.9 mmol). The
reaction mixture was stirred at room temperature until TLC
showed that all the starting material had reacted, than was
evaporated to dryness. Compounds were purified by flash
chromatography on silica gel using the appropriate eluent.
19. Spectra data of the representative compound 41. 1H NMR (500
MHz, DMSO-d6) 9.81 (s, 1H), 8.11 (s, 2H), 7.77 (s, 1H), 3.97 (t,
J = 5.1 Hz, 4H), 3.48 (t, J = 5.1 Hz, 4H), 1.44 (s, 9H). 13C NMR
(125 MHz, DMSO-d6) 180.8, 153.8, 143.1, 130.1, 129.8, 129.6,
129.3, 129.2, 124.4, 124.3, 122.2, 116.6, 79.2, 47.8, 42.8, 28.0.
HRMS (m/z): calcd. for C18H21F6N3O2SNa 480.1151 M+Na+;
found 480.1143. Anal. calcd for C18H21F6N3O2S: C, 47.26; H,
4.63; N, 9,19. Found: C, 46.95; H, 4.77; N, 9.17.
The authors declare no competing financial interest or
personal relationships that could have appeared to influence the
work reported in this paper. S.M, TCC, M.V.H, J.S.C., J.P.,
J.M.V.P., F.I.G., M. V.H. and M.E.P.I. are co-inventors of the
European patent EP16382073.1 (Name of the Invention:
Piperazine derivatives as antiviral agents with increased
therapeutic activity; year of application: 2016).
Acknowledgments
This work has been supported by Ministerio de Economía y
Competitividad, Plan Estatal 2013-2016 Retos-Proyectos I+D+i
(CTQ2016-78580-C2-2-R). MVH also thanks Ministerio de
Economía y Competitividad, Plan Estatal 2013-2016 Excelencia
I+D+i (CTQ2016-78703-P). This work has been also supported
by Plan Nacional de I+D+i 2013-2016 and Instituto de Salud
Carlos III, Subdirección General de Redes y Centros de
Investigación Cooperativa, Ministerio de Economía, Industria y
Competitividad, Spanish Network for Research in Infectious
Diseases (REIPI RD16/0016/0009)—co-financed by European
20. Valencia, R.; Arroyo, L. A.; Conde, M.; Aldana, J. M.; Torres, M.
J.; Fernández-Cuenca, F.; Garnacho-Montero, J.; Cisneros, J. M.;