Table 3 Cross-dimerization of arylacetylene 2 with silylacetylene 3a
MeOH, so that the overall process provides a new entry for the
synthesis of terminal alkenylacetylenes (ArCHLCH–CMCH (7))
with (Z)-configurations.14
Alkynes
Run (molar ratio) Product
Yield (%)b
[(Z) : (E) : gem]c
In conclusion, it has been discovered that cross-dimerization
between arylacetylenes (2a–f) and (trimethylsilyl)acetylene (3m)
proceeds in high (Z)-selectivity using vinylideneruthenium 1-Pri as
a catalyst precursor. The reaction provides complementary regio-
and stereo-selectivities to Nakamura’s titanium-catalyzed system
yielding ArCMC–C(SiMe3)LCH2.
This work was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.
1
2b : 3m
(1 : 20)
83 (79)
[95 : 5 : 0]
2d
2c : 3m
(1 : 5)
72 (65)
[90 : 5 : 5]
3e
2d : 3m
(1 : 5)
85 (76)
[93 : 7 : 0]
Notes and references
1 For reviews, see: (a) P. J. Stang and F. Diederich, Modern Acetylene
Chemistry, VCH, New York, 1995; (b) J. Henkelmann, in Applied
Homogeneous Catalysis with Organometallic Compounds, ed. B. Cornils
and W. A. Herrman, VCH, New York, 1996; (c) D. R. Kanis,
M. A. Ratner and T. J. Marks, Chem. Rev., 1994, 94, 195.
2 (a) H. Katayama, M. Nakayama, T. Nakano, C. Wada, K. Akamatsu
and F. Ozawa, Macromolecules, 2004, 37, 13; (b) M. Nishiura and
Z. Hou, J. Mol. Catal. A: Chem., 2004, 213, 101; (c) M. Ueda and
I. Tomita, Polym. Bull., 2004, 51, 359; (d) C.-K. Choi, I. Tomita
and T. Endo, Macromolecules, 2000, 33, 1487; (e) D. Venkatesan,
M. Yoneda and M. Ueda, React. Funct. Polym., 1996, 30, 341.
3 For recent examples, see: (a) M. Nishiura, Z. Hou, Y. Wakatsuki,
T. Yamaki and T. Miyamoto, J. Am. Chem. Soc., 2003, 125, 1184; (b)
C. Yang and S. P. Nolan, J. Org. Chem., 2002, 67, 591; (c) M. Rubina
and V. Gevorgyan, J. Am. Chem. Soc., 2001, 123, 11107; (d) T. Ohmura,
S.-I. Yorozuya, Y. Yamamoto and N. Miyaura, Organometallics, 2000,
19, 365; (e) Y. Nishibayashi, M. Yamanashi, I. Wakiji and M. Hidai,
Angew. Chem., Int. Ed., 2000, 39, 2909.
4
5
2e : 3m
(1 : 10)
81 (76)
[93 : 7 : 0]
2f : 3m
(1 : 10)
95 (90)
[93 : 0 : 7]
4 B. M. Trost, M. T. Sorum, C. Chan, A. E. Harms and G. Ru¨hter,
J. Am. Chem. Soc., 1997, 119, 698.
5 L. Chen and C.-J. Li, Tetrahedron Lett., 2004, 45, 2771.
6 M. Akita, H. Yasuda and A. Nakamura, Bull. Chem. Soc. Jpn., 1984,
57, 480.
6
7
a
2a : 3n
(1 : 10)
74
[100 : 0 : 0f]
7 J. Wang, M. Kapon, J. C. Berthet, M. Ephritikhine and M. S. Eisen,
Inorg. Chim. Acta, 2002, 334, 183.
8 (a) C. Bianchini, M. Peruzzini, F. Zanobini, P. Frediani and A. Albinati,
J. Am. Chem. Soc., 1991, 113, 5453; (b) C. Bianchini, P. Frediani,
D. Masi, M. Peruzzini and F. Zanobini, Organometallics, 1994, 13,
4616; (c) Y. Wakatsuki, H. Yamazaki, N. Kumegawa, T. Satoh and
J. Y. Satoh, J. Am. Chem. Soc., 1991, 113, 9604.
9 This type of transformation has already been documented: C. S. Yi,
N. Liu, A. L. Rheingold and L. M. Liable-Sands, Organometallics,
1997, 16, 3910.
10 H. Katayama, C. Wada, K. Taniguchi and F. Ozawa, Organometallics,
2000, 21, 3285.
11 C. S. Yi and N. Liu, Synlett, 1999, 281.
12 C. Slugovc, K. Mereiter, E. Zobetz, R. Schmid and K. Kirchner,
Oragnometallics, 1996, 15, 5275.
2a : 3o
(1 : 10)
45 (38)
[100 : 0 : 0]
Reaction conditions:
2
(1.0 mmol), 1-Pri (0.050 mmol),
N-methylpyrrolidine (0.20 mmol), CH2Cl2 (1.0 mL), room
temperature, 16–24 h. GLC yield based on the amount of 2
b
c
employed. Isolated yield is in parentheses. Isomer ratio of isolated
Reaction time 5 80 h.
product. Determined by 1H NMR.
Reaction time 5 5 h. Determined by GLC.
d
e
f
13 J. Ohshita, K. Furumori, A. Matsuguchi and M. Ishikawa, J. Org.
Chem., 1990, 55, 3277.
14 (a) M. Hoshi and K. Shirakawa, Synlett, 2002, 1101; (b) A. W. Gibson,
G. R. Humphrey, D. J. Kennedy and S. H. B. Wright, Synthesis, 1991,
414 and references cited therein.
reactivities were lower than that of 3m (runs 6 and 7). The
products (Z)-4 were easily desilylated by treatment with K2CO3 in
4338 | Chem. Commun., 2005, 4336–4338
This journal is ß The Royal Society of Chemistry 2005