C O M M U N I C A T I O N S
Scheme 1
can be converted to the corresponding piperidine derivatives by a
facile N-N bond cleavage (>85% yield) using either Raney
nickel3,17 or lithium in ammonia.3,18
In conclusion, we have developed an efficient catalytic enantio-
selective hydrogenation of pyridine derivatives. Enhanced reactivity
was possible by an optimization of the electronic properties of the
catalyst through ligand modification. We are currently investigating
the mechanistic aspects of the hydrogenation process as well as
improving the scope of the reaction through novel ligand design.
Table 3. Hydrogenation of N-Benzoyliminopyridinium Ylides
Acknowledgment. This work was supported by the National
Science and Engineering Research Council (NSERC) of Canada,
Merck Frosst Canada, Boehringer Ingelheim (Canada), and the
Universite´ de Montre´al. C.Y.L. is grateful to NSERC (PGS A and
B) and FCAR (B2) for postgraduate fellowships.
entry
R
yield 5 (%)a
ee 5 (%)b
products
1
2
2-Me
2-Et
2-Et
2-nPr
2-Bn
2-Bn
2-CH2OBn
2-(CH2)3OBn
2,3-Me2
98 (84)
96 (78)
60
98 (75)
97
65
85
88
90 (97)
83 (94)
78
84 (95)
58
50
76
88
54
5a
5b
5b
5c
5d
5d
5e
5f
Supporting Information Available: Experimental procedures and
spectral data of selected compounds (PDF). This material is available
3c
4
5
6c
7
References
(1) For reviews on the synthesis of piperidines, see: (a) Buffat, M. G. P.
Tetrahedron 2004, 60, 1701-1729. (b) Felpin, F.-X.; Lebreton, J. Eur. J.
Org. Chem. 2003, 3693-3712. (c) Weintraub, P. M.; Sabol, J. S.; Kane,
J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953-2989. (d) Laschat,
S.; Dickner, T. Synthesis 2000, 1781-1813. (e) Mitchinson, A.; Nadin,
A. J. Chem. Soc., Perkin Trans. 1 2000, 2862-2892.
(2) (a) Lemire, A.; Grenon, M.; Pourashraf, M.; Charette, A. B. Org. Lett.
2004, 6, 3517-3520. (b) Charette, A. B.; Grenon, M.; Lemire, A.;
Pourashraf, M.; Martel, J. J. Am. Chem. Soc. 2001, 123, 11829-11830.
(3) Legault, C.; Charette, A. B. J. Am. Chem. Soc. 2003, 125, 6360-6361.
(4) (a) Fu¨rstner, A.; Leitner, A.; Me´ndez, M.; Krause, H. J. Am. Chem. Soc.
2002, 124, 13856-13863. (b) Fu¨rstner, A.; Leitner, A. Angew. Chem.,
Int. Ed. 2002, 41, 609-612. (c) Marcoux, J.-F.; Marcotte, F.-A.; Wu, J.;
Dormer, P. G.; Davies, I. W.; Hughes, D.; Reider, P. J. J. Org. Chem.
2001, 66, 4194-4199 and references therein.
(5) (a) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.; Lehmann C. W.
Angew. Chem., Int. Ed. 2004, 43, 2850-2852. (b) Scheiper, B.; Glorius,
F.; Leitner, A.; Fu¨rstner, A. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
11960-11965.
8
9
10
91 [>95:5]
92 [57/43]
5g
5h, 5h′
2,5-Me2
86/84
a Isolated yield after recrystallization is shown in parentheses; diaster-
eomeric ratios are shown in brackets. b Determined by HPLC. Enantiomeric
excesses after recrystallization are shown in parentheses. c Catalyst 8b was
used.
complex (Table 2). We screened a variety of counterions (BF4, OTf,
CF3CO2) and found that a cationic species bearing the tetrakis-
(3,5-bis(trifluoromethyl)phenyl)borate (BArF) counterion was su-
perior (entries 1 and 2).14 The use of a bulkier phosphine (entry 3)
led to a dramatic decrease of reactivity and almost no conversion.
Although the effect on the enantioselectivity was minimal, the use
of moderately electron-withdrawing substituents led to an increase
in yields (entries 5 and 6), the p-fluoro derivative being optimal.
However, in all the cases, there is a noticeable amount of remaining
tetrahydropyridine 7a upon reducing 4a, even with prolonged
reaction times. This can be attributed to a slower hydrogenation
rate of the isolated double bond and the inactivation of the catalyst
by formation of a hydride-bridged iridium trimer.15
(6) Other examples of diastereoselective hydrogenation of pyridines: (a)
Solladie´-Cavallo, A.; Marsol, C.; Yaakoub, M.; Azyat, K.; Klein, A.; Roje,
M.; Suteu, C.; Freedman, T. B.; Cao, X.; Nafie, L. A. J. Org. Chem.
2003, 68, 7308-7315. (b) Douja, N.; Malacea, R.; Banciu, M.; Besson,
M.; Pinel, C. Tetrahedron Lett. 2003, 44, 6991-6993. (c) Douja, N.;
Besson, M.; Gallezot, P.; Pinel, C. J. Mol. Catal. A 2002, 186, 145-151.
(d) Steiner, H.; Giannousis, P.; Pische-Jacques, A.; Blaser, H.-U. Top.
Catal. 2000, 13, 191-194.
(7) (a) Lu, S.-M.; Han, P.-Y.; Zhou, Y.-G. AdV. Synth. Catal. 2004, 346,
909-912. (b) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, P.-Y.; Zhou,
Y.-G. J. Am. Chem. Soc. 2003, 125, 10536-10537.
Using the optimized catalyst and procedure, we proceeded to
explore the scope and limitation of the methodology. We submitted
different substituted N-benzoyliminopyridinium ylides to the hy-
drogenation conditions, and the results are summarized in Table 3.
Although for every substrate the conversions were complete, in
some cases, small quantities of the remaining tetrahydropyridine
were detected. To avoid this, we proceeded to hydrogenate the crude
mixture over Pd/C.12
In most cases, the yields obtained are excellent, indicating that
a fast and efficient hydrogenation of the key dihydropyridine
intermediate takes place. This is in sharp contrast with the results
obtained with the unoptimized catalyst 8b (entries 3 and 6), where
a drop in yields and enantioselectivities was observed. These
findings clearly demonstrate the importance of the electronic
properties of the ligand in this reaction. Pyridinium ylide 4g afforded
only the cis diastereomer, albeit in low enantioselectivities. It
appears that the substitution at the 3-position is detrimental to the
enantioselectivities with this catalytic system.16 The low diastereo-
selectivity observed for substrate 4h, however, tends to indicate
that the enantioselectivity for the hydrogenation of a substituted
tetrahydropyridine 7 is low. It is also noteworthy to mention that
the reduced products are highly crystalline solids that can easily
be enriched by single recrystallization from boiling ethyl acetate
(entries 1, 2, and 4). Finally, the hydrogenation adducts obtained
(8) (a) Raynor, S. A.; Thomas, J. M.; Raja, R.; Johnson, B. F. G.; Belle, R.
G.; Mantle, M. D. Chem. Commun. 2000, 1925-1926. (b) Studer, M.;
Wedemeyer-Exl, C.; Spindler, F.; Blaser, H.-U. Monatsh. Chem. 2000,
131, 1335-1343. (c) Blaser, H.-U.; Ho¨ning, H.; Studer, M.; Wedemeyer-
Exl, C. J. Mol. Catal. A 1999, 139, 253-257.
(9) Recent examples: (a) Solinas, M.; Pfaltz, A.; Cozzi, P. G.; Leitner, W. J.
Am. Chem. Soc. 2004, 126, 16142-16147. (b) Dorta, R.; Broggini, D.;
Stoop, R.; Ru¨egger, H.; Spindler, F.; Togni, A. Chem.sEur. J. 2004, 10,
267-278. (c) Guiu, E.; Munoz, B.; Castillon, S.; Claver, C. AdV. Synth.
Catal. 2003, 345, 169-171. (d) Cozzi, P. G.; Menges, F.; Kaiser, S. Synlett
2003, 833-836. (e) Blaser, H.-U. AdV. Synth. Catal. 2002, 344, 17-31.
(f) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425-3428.
(10) The pyridinium ylides were synthesized from the corresponding pyridines
in one step using a one-pot amination/benzoylation procedure. Yields:
76-98%. For further information, see: Legault, C.; Charette, A. B. J.
Org. Chem. 2003, 68, 7119-7122 and references therein.
(11) (a) Morimoto, T.; Nakajima, N.; Achiwa, K. Synlett 1995, 748-750. (b)
Morimoto, T.; Nakajima, N.; Achiwa, K. Chem. Pharm. Bull. 1994, 42,
1951-1953.
(12) See Supporting Information for further details.
(13) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336-345.
(14) Use of BArF counterion in iridium-catalyzed hydrogenation: Lightfoot,
A.; Schnider, P.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 2897-2899.
(15) (a) Smidt, S. P.; Pfaltz, A.; Martinez-Viviente, E.; Pregoson, P. S.; Albinati,
A. Organometallics 2003, 22, 1000-1009. (b) Chodosh, D. F.; Crabtree,
R. H.; Felkin, H.; Morehouse, S.; Morris, G. E. Inorg. Chem. 1982, 21,
1307-1311.
(16) The hydrogenation of the 3-methylpyridinium ylide led to a low yield
and low enantiocontrol.
(17) Alexakis, A.; Lensen, N.; Tranchier, J.-P.; Mangeney, P.; Dupont-Feneau,
J.; Declercq, J. P. Synthesis 1995, 1038-1050.
(18) Denmark, S. E.; Nicaise, O.; Edwards, J. P. J. Org. Chem. 1990, 55,
6219-6223.
JA0525298
9
J. AM. CHEM. SOC. VOL. 127, NO. 25, 2005 8967