Journal of the American Chemical Society
Page 4 of 5
Scheme 2. Late-Stage Functionalization of Nitrogen Containing Moleculesa
1
2
TfO
O
A.
B.
C.
N
O
OR
NH
H
3
4
5
6
7
8
9
Me
Dextromethorphan
Me
H
O
Derivative (+)-16b
N
Cycloheximide Derivative
(+)-21,b R = C(O)CH2Cl
H
Me
H
Me
HBF4
HBF4
Fe((R,R)-CF3PDP) 2
Me
H
Fe((S,S)-CF3PDP) 2
Fe((S,S)-PDP) 1
oxidation
AcO
oxidation
oxidation
H
TfO
TfO
Abiraterone Acetate
N
O
Analog (+)-19b
Me
O
OR
NH
H
+
Me
H
Me
N
N
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
O
H
H
Me
Me
H
H
HO
(+)-20e
42% yieldf,g
Streptovitacin A, R = H; 22
R = C(O)CH2Cl; (+)-23
50% yieldh
AcO
OH
Me
O
45% yieldc
(+)-17
2.5:1 ketone/alcohold
(+)-18
H
OH
6:1 alcohol/ketoned
aIsolated yield is average of two runs. bSubstrates containing chirality demonstrated matched/mis-matched reactivity with catalyst enantiomers. c(i) HBF4•Et2O (1.1 equiv), CH2Cl2, concd in vacuo, (ii) Slow addition with 2, (iii) 1M
NaOH. dBased on isolation. e(+)-20 Refers to pure alcohol. f(i) HBF4•Et2O (1.1 equiv), CH2Cl2, concd in vacuo, (ii) Iterative addition with 2, (iii) NaHCO3. gStarting material recycled 2x. hIterative addition with 1.
These represent the first examples of transition metal cata-
lyzed remote, aliphatic C—H oxidations on a morphinan
and nitrogen-containing steroid skeletons.
REFERENCES
(1) (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem.
2014, 57, 10257. (b) White, M. C. Science 2012, 335, 807. (c) Nam,
W.; Lee, Y.-M.; Fukuzumi, S. Acc. Chem. Res. 2014, 47, 1146.
(2) (a) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. (b) Catino,
A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc. 2006,
128, 5648. (c) Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R.
J. J. Am. Chem. Soc. 2010, 132, 1464. (d) Hari, D. P.; König, B. Org.
Lett. 2011, 13, 3852. (e) Noble, A.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2014, 136, 11602. (f) He, J.; Hamann, L. G.; Davies, H. M. L.;
Beckwith, R. E. J. Nat. Commun. 2015, 6, 5943.
(3) (a) McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J.
Nature 2014, 510, 129. (b) Chan, K. S. L.; Wasa, M.; Chu, L.; Laforteza,
B. N.; Miura, M.; Yu, J.-Q. Nat. Chem. 2014, 6, 146.
(4) (a) Chen, M. S.; White, M. C. Science 2007, 318, 783. (b) Chen,
M. S.; White, M. C. Science 2010, 327, 566. (c) Gormisky, P. E.; White,
M. C. J. Am. Chem. Soc. 2013, 135, 14052.
Cycloheximide, a readily available natural product with
broad antimicrobial activity but high toxicity is currently
used as a protein synthesis inhibitor. The C4 hydroxylated
analogue, streptovitacin A 22, has shown diminished tox-
icity and has been obtained via an eight step de novo syn-
thesis proceeding in 7% overall yield.15 The direct oxidation
of cycloheximide derivative 21 with Fe((S,S)-PDP) af-
fords streptovitacin A derivative 23 in excellent yield
(50%) (Scheme 2C), underscoring the power of remote
late stage C—H oxidation to streamline synthesis.
We have demonstrated remote Fe(PDP)-catalyzed oxi-
dation in a range of nitrogen heterocycles by employing
Brønsted/Lewis acid complexation strategies. We envision
this will be a highly enabling methodology for the genera-
tion of medicinal agents via late-stage oxidation and for the
evaluation of their metabolites.
(5) (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: California, 2006; pp 15-16. (b)
Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev.
2010, 110, 4023.
(6) Pyridines in Pd(II)/sulfoxide allylic C—H oxidation: (a) Malik,
H. A.; Taylor, B. L. H.; Kerrigan, J. R.; Grob, J. E.; Houk, K. N.; Du Bois,
J.; Hamann, L. G.; Patterson, A. W. Chem. Sci. 2014, 5, 2352. Aliphatic
amines with methyl(trifluoromethyl) dioxirane (TFDO): (b) Asensio,
G.; González-Núñez, M. E.; Bernardini, C. B.; Mello, R.; Adam, W. J. Am.
Chem. Soc. 1993, 115, 7250. Shilov oxidation of aliphatic amines (5
equiv): (c) Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 12796.
(7) (a) Ferrer, M.; Sánchez-Baeza F.; Messeguer, A.; Diez, A.; Rubiral-
ta, M. J. Chem. Soc., Chem. Commun. 1995, 293. (b) Brennan, M. B.;
Claridge, T. D. W.; Compton, R. G.; Davies, S. G.; Fletcher, A. M.; Hen-
stridge, M. C.; Hewings, D. S.; Kurosawa, W.; Lee, J. A.; Roberts, P. M.;
Schoonen, A. K.; Thomson, J. E. J. Org. Chem. 2012, 77, 7241. (c)
Woodward, C. P.; Spiccia, N. D.; Jackson, W. R.; Robinson, A. J. Chem.
Commun. 2011, 47, 779.
ASSOCIATED CONTENT
Supporting Information. This material is available free of
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡These authors contributed equally.
(8) Hampe, E. M.; Rudkevich, D. M. Tetrahedron 2003, 59, 9619.
(9) Zimmerman, D. M.; Nickander, R.; Horng, J. S.; Wong, D. T. Na-
ture 1978, 275, 332.
Funding Sources
Financial support was provided by the NIH/NIGMS (GM
112492).
(10) O’Hagan, D. Nat. Prod. Rep. 1997, 14, 637.
(11) Gören, M. Z.; Onat, F. CNS Drug Rev. 2007, 13, 224.
(12) Wu, Y.-H.; Rayburn, J. W.; Allen, L. E.; Ferguson, H. C.; Kissel, J.
W. J. Med. Chem. 1972, 15, 477.
(13) Schmidt, V. A.; Quinn, R. K.; Brusoe, A. T.; Alexanian, E. J. J.
Am. Chem. Soc. 2014, 136, 14389.
(14) Luo, Y.-R.; Cheng, J.-P. in CRC Handbook of Chemistry & Phys-
ics 94th Ed. (ed. Haynes, W. M.) pp. 9-65 (CRC, 2013).
(15) Kondo, H.; Oritani, T.; Yamashita, K. Agric. Biol. Chem. 1990,
54, 1531.
ACKNOWLEDGMENT
We thank G. Snapper for initial investigations, J. Griffin, J.
Zhao and T. Osberger for spectra inspection, C. Delaney for
checking procedures, Dr. L. Zhu for assistance with NMR data
analysis, Dr. J. Bertke and Dr. D. Gray for crystallographic data
and analysis. We thank Zoetis for an unrestricted grant to ex-
plore C—H oxidations in pharmaceuticals.
ACS Paragon Plus Environment