A Novel One-Step Synthesis of
2-Substituted 6-Azaindoles from
3-Amino-4-picoline and Carboxylic Esters
FIGURE 1. Retrosynthetic analysis.
Jinhua J. Song,* Zhulin Tan, Fabrice Gallou,
Jinghua Xu, Nathan K. Yee, and Chris H. Senanayake
dine derivatives also proved useful for the synthesis of
substituted azaindoles.5 Hands et al. have developed a
convenient azaindole synthesis by reacting Weinreb
amides with the dianion of 3-tert-butoxycarbonylamino-
4-picoline or 4-tert-butoxycarbonylamino-3-picoline, fol-
lowed by Boc deprotection/cyclization.6 For example,
2-phenyl-6-azaindole was synthesized in two steps in 50%
overall yield from 3-tert-butoxycarbonylamino-4-picoline,
whose synthesis required two additional steps from
3-aminopyridine6 or one additional step from 3-amino-
4-picoline. Certain substituted azaindoles were obtained
via photostimulated SRN1 reaction between ketone eno-
lates and N-protected 2-amino-3-iodo-, 3-amino-4-iodo-,
or 4-amino-3-iodopyridines followed by acidic deprotec-
tion and cyclization.7 In a more recent report, 2-arylaza-
indoles were prepared in multiple steps from substituted
pyridines such as 3-nitro-4-[(E)-2-phenylethenyl]pyridine
via a series of reduction-oxidation reactions.8 The above
and other reported processes9 often require multiple-step
synthesis and suffer from limited generality and/or
unsatisfactory overall yields. Therefore, it is highly
desirable to investigate new strategies for azaindole
synthesis.
During the course of our search for a general and
practical method to prepare 2-substituted 6-azaindoles,
we considered the possibility of utilizing the commercially
available and inexpensive 3-amino-4-picoline (1)10 as a
direct building block, as indicated in the retrosynthetic
analysis in Figure 1. Our proposed reaction sequence
would involve the initial creation of the C-C bond
followed by cyclization and dehydration to give the
azaindole derivatives. We believe that this disconnection
represents one of the most efficient strategies for 6-aza-
indole formation since it does not necessitate the use of
protecting groups or any oxidation state adjustment. In
this paper, we wish to report a novel one-step synthesis
of 2-substituted 6-azaindoles via condensation of car-
boxylic esters with the dianion of 3-amino-4-picoline
(Figure 2).
Department of Chemical Development, Boehringer Ingelheim
Pharmaceuticals, Inc., 900 Old Ridgebury Road, P.O. Box
368, Ridgefield, Connecticut 06877-0368
Received April 2, 2005
Dilithiation of 3-amino-4-picoline (1) was achieved with sec-
BuLi at room temperature. Condensation of the resulting
dianion (2) with carboxylic esters afforded a wide range of
2-substituted 6-azaindoles in good yields.
Azaindoles constitute essential subunits in many phar-
maceutically important drug substances.1 In contrast to
a vast array of methods for indole synthesis,2 there are
a limited number of methodologies available for azaindole
formation.3 The often employed method involves a So-
nogashira coupling of a terminal alkyne with 4-tert-
butoxycarbonylamino-3-iodopyridine followed by depro-
tection/cyclization in situ or in a separate step.4 Palladium-
catalyzed heteroannulation of internal alkynes with
2-amino-3-iodo-, 3-amino-4-iodo-, or 4-amino-3-iodopyri-
(1) (a) Maignan, S.; Guilloteau, J.-P.; Choi-Sledeki, Y. M.; Becker,
M. R.; Ewing, W. R.; Pauls, H. W.; Spada, A. P.; Mikol, V. J. Med.
Chem. 2003, 46, 685. (b) Choi-Sledeski, Y. M.; Kearney, R.; Poli, G.;
Pauls, H.; Gardner, C.; Gong, Y.; Becker, M.; Davis, R.; Spada, A.;
Liang, G.; Chu, V.; Brown, K.; Collussi, D.; Leadley, R., Jr.; Rebello,
S.; Moxey, P.; Morgan, S.; Bentley, R.; Kasiewski, C.; Maignan, S.;
Guilloteau, J.-P.; Mikol, V. J. Med. Chem. 2003, 46, 681. (c) Marminon,
C.; Pierre, A.; Pfeiffer, B.; Perez, V. S.; Joubert, A.; Bailly, C.; Renard,
P.; Hickman, J.; Prudhomme, M. J. Med. Chem. 2003, 46, 609. (d) Kuo,
G.-H.; Prouty, C.; DeAngelis, A.; Shen, L.; O’Neil, D. J.; Shah, C.;
Connolly, P. J.; Murray, W. V.; Conway, B. R.; Cheung, P.; Westover,
L.; Xu, J. Z.; Look, R. A.; Demarest, K. T.; Emanuel, S.; Middleton, S.
A.; Jolloffe, L. J. Med. Chem. 2003, 46, 4021. (e) Kulagowski, J. J.;
Leeson, P. D. US patent, 5563152, 1991. (f) DiNinno, F. P.; Guthikonda,
R. N.; Meurer, L. C. US patent, 5532261, 1994. (g) Hunsch, W.;
Angerbauer, R.; Fey, P.; Bisschoff, H.; Bender, J.; Schmidt, D. US
patent, 5120782, 1991. (h) Patchett, A. A.; Mantlo, N. B.; Greenlee,
W. J. US patent, 5124335, 1991. (i) Scherlock, M. H.; Tom, W. C. US
patent, 5023265, 1990. (j) Anderson, P. L. US patent, 4751235, 1986.
(k) Fisher, M. H.; Schwartzkopf, G., Jr.; Hoff, D. R. J. Med. Chem.
1972, 15, 1168.
(2) (a) Sunberg, R. J. The Chemistry of Indoles; Academic Press:
New York, 1970. (b) Pindur, U.; Adam, R. J. Heterocycl. Chem. 1988,
25, 1.
(3) (a) Greenhill, J. V. In Comprehensive Heterocyclic Chemistry;
Kartritzky, A. R., Rees, C. W., Bird, C. W., Cheeseman, G. W. H., Eds.;
Pergamon: Oxford, UK, 1984; Vol. 4, p 497. (b) Yakhontov, L. N.;
Prokopov, A. A. Russ. Chem. Rev. 1980, 49, 428. (c) Yakhontov, L. N.
Russ. Chem. Rev. 1968, 37, 551. (d) Wilette, R. E. Adv. Heterocycl.
Chem. 1968, 9, 27.
(4) Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J. B. Tetrahedron
Lett. 1998, 39, 5159.
(5) (a) Ujjainwalla, F.; Walsh, T. F. Tetrahedron Lett. 2001, 42, 6441.
(b) Ujjainwalla, F.; Warner, D. Tetrahedron Lett. 1998, 39, 5355. (c)
Park, S. S.; Choi, J.-K.; Yum, E. K.; Ha, D.-C. Tetrahedron Lett. 1998,
39, 627.
(6) Hands, D.; Bishop, B.; Cameron, M.; Edwards, J. S.; Cottrell, I.
F.; Wright, S. H. B. Synthesis 1996, 877.
(7) Estel, L.; Marsais, F.; Queguiner, G. J. Org. Chem. 1988, 53,
2740.
(8) Kuzmich, D.; Mulrooney, C. Synthesis 2003, 11, 1671.
(9) Other methods: (a) Turner, J. A. J. Org. Chem. 1983, 48, 3401.
(b) Reference 1k. (c) Cadgan, J. I. G.; Cameron-Wood, M.; Mackie, R.
K.; Searle, R. J. G. J. Chem. Soc. 1965, 4831. (d) Davis, M. L.;
Wakefield, B. J.; Wardell, J. A. Tetrahedron 1992, 48, 939. (e) Kumar,
V.; Dority, J. A.; Bacon, E. R.; Singh, B.; Lesher, G. Y. J. Org. Chem.
1992, 57, 6995. (f) Zhang, Z.; Yang, Z.; Meanwell, N. A.; Kadow, J. F.;
Wang, T. J. Org. Chem. 2002, 67, 2345.
(10) 3-Amino-4-picoline is commercially available in bulk from
multiple sources.
10.1021/jo0506480 CCC: $30.25 © 2005 American Chemical Society
Published on Web 07/01/2005
6512
J. Org. Chem. 2005, 70, 6512-6514