C O M M U N I C A T I O N S
sch radical reaction10d-h to afford the secondary alcohol product
by releasing the Rh(I) catalysts for the next cycle.
Scheme 2. Deuterium Crossover Experiment
In summary, we have first successfully developed a new Rh-
catalyzed/Lewis acid-promoted C-C bond formation with olefins
via sp3 C-H activation of aliphatic alcohols, which can be simply
performed in good yields without the need to sacrifice any extra
functional groups. The more detailed and widespread investigation
of this new reaction is underway.
Scheme 3. Plausible Reaction Mechanism
Acknowledgment. We are grateful for the financial support of
the NSFC (Nos. 30271488, 20021001, and 203900501) and the
Chang Jiang Scholars Program.
Supporting Information Available: Experimental procedures,
spectroscopic and analytical data, and copies of NMR spectra of the
products. This material is available free of charge via the Internet at
References
(1) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda,
M.; Chatani, N. Nature 1993, 366, 529-531.
(2) For C-H bond activation reviews, see: (a) Naota, T.; Takaya, H.;
Murahashi, S. I. Chem. ReV. 1998, 98, 2599-2660. (b) Dyker, G. Angew.
Chem., Int. Ed. 1999, 38, 1698-1712. (c) Ritleng, V.; Sirlin, C.; Pfeffer,
M. Chem. ReV. 2002, 102, 1731-1770. (d) Labinger, J. A.; Bercaw, J. E.
Nature 2002, 417, 507-514. For representative examples of sp3-sp3 C-C
bond formation via C-H bond activation, see: (e) Jun, C.-H.; Hwang,
D.-C.; Na, S.-J. Chem. Commun. 1998, 1405-1406. (f) Davies, H. M.
L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063-
3070. (g) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.;
Murai, S. J. Am. Chem. Soc. 2001, 123, 10935-10941. (h) Yao, X.-Q.;
Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884-6885.
radical mechanism because the third alkyl radical was more stable
than the secondary alkyl radical.
To propose a possible reaction mechanism, we conducted some
more supporting experiments. For example, RhCl3/BF3‚OEt2/toluene
was tested and could be effective to this coupling reaction, which
showed the formation of Rh(III) intermediates. Addition of PPh3
(0.05 equiv) could prevent the reaction, indicating that the presence
of PPh3 could prohibit the ligand dissociation and exchange. The
crossover experiment was performed using styrene and a 1:1
mixture of deuterated and undeuterated alcohols (Scheme 2). The
resulting mixtures were isolated and analyzed by mass spectrometry
to determine the isotopic distribution. This experiment result
indicated that a possible radical reaction mechanism was involved,
which would lead to a statistical distribution of the labels in the
products.8 Furthermore, formation of the expected adducts could
be inhibited completely by the addition of radical scavenger (1,4-
benzoquinone, TEMPO, and FeCl3) in the system of ethanol with
styrene (in the same experimental procedure as entry 1 in Table
1), which further confirmed the presence of a radical reaction
mechanism. Besides, 4-phenylbutan-2-one could not have been
observed in the cross-coupling of ethanol and styrene (entry 1, Table
1), and when acetaldehyde was used in place of the primary alcohol
substrate, the corresponding coupling reaction with styrene could
not proceed under the same condition. These experimental facts
mentioned above indicated that the reaction could not undergo the
reaction mechanism as reported:9 first hydrogen transfer from
alcohol to form aldehyde, and subsequent radical hydroacylation,
followed by hydrogenation of ketone, to give the corresponding
product.
(3) Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Org. Lett. 2004,
6, 1001-1003.
(4) For photoinitiated additions and the reactions initiated by di-tert-butyl
peroxide of alcohols to aliphatic olefins, see: (a) Walling, C.; Huyser, E.
S. Org. React. 1963, 13, 91-149. (b) Stacey, F. W.; Harris, J. F. Org.
React. 1963, 13, 150-376. (c) Curran, D. P. Synthesis 1988, 489-513.
(d) Urry, W. H.; Stacey, F. W.; Huyser, E. S.; Juveland, O. O. J. Am.
Chem. Soc. 1954, 76, 450-455. (e) LaZerte, J. D.; Koshar, R. J. J. Am.
Chem. Soc. 1955, 77, 910-914.
(5) Pearson, D. E.; Buthler, C. A. Synthesis 1972, 533-542.
(6) (a) Tsuchimoto, T.; Kamiyama, S.; Negoro, R.; Shirakawa, E.; Kawakami,
Y. Chem. Commun. 2003, 852-853. (b) Peppe, C.; Lang, E. S.; de
Andrade, F. M.; de Castro, L. B. Synlett 2004, 1723-1726.
(7) (a) Wolfe, J. P.; Rossi, M. A. J. Am. Chem. Soc. 2004, 126, 1620-1621.
(b) Qian, H.; Han, X.-Q.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004,
126, 9536-9537. (c) Oe, Y.; Ohta, T.; Ito, Y. Synlett 2005, 179-181.
(8) For the similar crossover experiments’ description, see: (a) Bergman, R.
G. Acc. Chem. Res. 1980, 13, 113-120. (b) Janowicz, A. H.; Bergman,
R. G. J. Am. Chem. Soc. 1983, 105, 3929-3939.
(9) For the reaction mechanism, see: (a) Cho, C. S.; Kim, B. T.; Kim, T.-J.;
Shim, S. C. J. Org. Chem. 2001, 66, 9020-9022. (b) Lee, D.-Y.; Moon,
C. W.; Jun, C.-H. J. Org. Chem. 2002, 67, 3945-3948. (c) Taguchi, K.;
Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.; Ishii, Y. J. Am. Chem.
Soc. 2004, 126, 72-73. (d) Chang, D.-H.; Lee, D.-Y.; Hong, B.-S.; Choi,
J.-H.; Jun, C.-H. J. Am. Chem. Soc. 2004, 126, 424-425.
(10) (a) Halpern, J.; Wong, C. S. J. Chem. Soc., Chem. Commun. 1973, 629-
630. (b) Green, M. L. H.; O’Hare, D. Pure Appl. Chem. 1985, 57, 1897-
1910. (c) Hill, C. L. Synlett 1995, 127-132. For the Kharasch addition
reaction mechanism, see: (d) Kharasch, M. S.; Jensen, E. V.; Urry, W.
H. Science 1945, 102, 128-129. (e) Murai, S.; Sugise, R.; Sonada, N.
Angew. Chem., Int. Ed. Engl. 1981, 20, 475-476. (f) Bland, W. J.; Davis,
R.; Durrant, J. L. A. J. Organomet. Chem. 1985, 280, 397-406. (g) Cable,
C. J.; Adams, H.; Bailey, N. A.; Crosby, J.; White, C. J. Chem. Soc.,
Chem. Commun. 1991, 165-166. (h) Pereira, S.; Srebnik, M. J. Am. Chem.
Soc. 1996, 118, 909-910. For palladium-catalyzed activation/oxidation
of alcohols, see: (i) Mueller, J. A.; Goller, C. P.; Sigman, M. S. J. Am.
Chem. Soc. 2004, 126, 9724-9734. (j) Stoltz, B. M. Chem. Lett. 2004,
33, 362-367. (k) Steinhoff, B. A.; Guzei, I. A.; Stahl, S. S. J. Am. Chem.
Soc. 2004, 126, 11268-11278.
On the basis of the above experimental results and the previously
reported literature,10 a tentative mechanism was thus proposed, as
shown in Scheme 3, which involved the Lewis acid-promoted11
direct C-H bond activation of alcohol by a Rh(I) species. The
reaction first proceeded by coordination of Lewis acid with an
oxygen atom, and then the oxidation addition of the C-H bond to
RhCl(PPh3)3, followed by olefin coordination, to give the Rh(III)
complexes A.12 The formed Rh(III) complexes A then generated a
coordinated radical pair B, which underwent the analogical Khara-
(11) For Lewis acid in free radical reactions, see: Renaud, P.; Gerster, M.
Angew. Chem., Int. Ed. 1998, 37, 2562-2579.
(12) (a) Jun, C.-H.; Moon, C. W.; Lee, D.-Y. Chem.sEur. J. 2002, 8, 2422-
2428. (b) Williams, N. A.; Uchimaru, Y.; Tanaka, M. J. Chem. Soc., Chem.
Commun. 1995, 1129-1130.
JA0528331
9
J. AM. CHEM. SOC. VOL. 127, NO. 31, 2005 10837