dines undergo benzylic deprotonation upon treatment with
s-BuLi/TMEDA.7 The N-substituent effect in the lithiation
of oxazolinylphenylaziridines has also been investigated.8 In
no case was ortho lithiation observed. In addition, it had been
reported that lithiation of N-tosylphenylaziridine occurs at
the benzylic position and that the resulting lithio derivative
adds to the aryl group of the N-tosyl substituent with
subsequent dearomatization.9
Herein, we report for the first time that some N-alkyl
phenylaziridines can be cleanly and very efficiently ortho
lithiated upon treatment with organolithiums. Treatment of
aziridine 1a, which was easily prepared from styrene and
Br2/Me2S/MeNH2,10 with s-BuLi (1.5 equiv) in THF at -78
°C produced a yellow solution that turned colorless upon
quenching with D2O to furnish N-methyl (ortho-deuterio-
phenyl)aziridine 3a (>98%), with no trace of the R-deuterio-
phenylaziridine.11 The ortho-lithiated phenylaziridine 2a
likely intervenes in the conversion of 1a into 3a (Scheme 1,
Table 1).
Table 1. Reaction of Ortho-Lithiated Phenylaziridine 2a with
Electrophiles
aziridine 3
phthalan 5
electrophile
D2O
(% yield)
(% yield)
dr
3a (>98)a,b
3b (85)a
3c (63)a
3d (81)a
3e (80)c
3f (98)a
3g (50)a,d
3he
3i (76)f
3j (47)f
3k (52)a
3l (55)f
CH3I
1,2-dibromoethane
hexachloroethane
I2
DMF
PhCONMeOMe
(CH3)2CO
CH3CHO
PhCHO
Ph2CO
CH3(CH2)2COPh
CO2
ClCOOCH2CH3
ClCOOCH3
5a (>95)a
5bg
50/50h
60/40h,i
5c (>95)f
5d (>95)a
5e (>95)f
5f (73)a
5g (25)f
5h (55)f
50/50i,j
3m (25)f
50/50h
50/50h
a Isolated yields. b >98% D. c Yield calculated by weighing the crude
reaction product, after washing it with Et2O and 1H NMR analysis; this
product tends to decompose very quickly over time. d Yield decreases to
26% with DMB. e Not isolated. f Overall isolated yields in both diastere-
omers. g Aminomethylphthalan 5b could not be isolated. h Inseparable
mixture of diastereomers. i Relative configuration ascertained as described
in ref 15. j Diastereomers separated by column chromatography on silica
gel (see Supporting Information for details).
Scheme 1
that ortho lithiation competes only in the case of trans-
stilbene oxides.12d,e The lower kinetic acidity of hydrogens
R to nitrogen compared with hydrogens R to oxygen may
be playing a role.13 Therefore, we conclude that in the
lithiation of 1a, the N-methyl aziridino group acts as an ortho-
directing group. This has no literature precedent, although
it is known that benzylamines undergo ortho lithiation upon
treatment with organolithiums.2
Ortho-lithiated phenylaziridine 2a proved to be extra-
ordinarily stable: once generated at low temperature it could
be warmed to room temperature without undergoing any
transformation, and addition of D2O furnished 3a almost
quantitatively. Support of the hypothesis that the aziridine
nitrogen coordinates to the ortho-lithiated species 2a comes
from the observation that the aziridine 1a is configurationally
stable14 and puts the nitrogen lone-pair on the same side of
the phenyl group with respect to the N-C bond, as clearly
established by two-dimensional NOESY correlations (Scheme
1).
By way of comparison, it is worth noting that styrene
oxide12a,b,e and derivatives12c,e undergo clean R-lithiation and
(5) (a) Satoh, T. Chem. ReV. 1996, 96, 3303-3326. (b) Vedejs, E.;
Kendall, J. T. J. Am. Chem. Soc. 1997, 119, 6941-6942. (c) Satoh, T.;
Ozawa, M.; Takano, K.; Kudo, M. Tetrahedron Lett. 1998, 39, 2345-2348.
(d) Bisseret, P.; Bouis-Peter, C.; Jacques, O.; Henriot, S.; Eustache, J. Org.
Lett. 1999, 1, 1181-1182. (e) Alezra, V.; Bonin, M.; Mivouin, L.; Policar,
C.; Husson, H. P. Eur. J. Org. Chem. 2001, 2589-2594. (f) Hayes, J. F.;
Prevost, N.; Proket, I.; Shipman, M.; Slawin, A. M. Z.; Twin, H. Chem.
Commun. 2003, 1344-1345. (g) O’Brien, P.; Rosser, C. M.; Caine, D.
Tetrahedron 2003, 49, 9779-9791. (h) Vedejs, E.; Bhaun Prasad, S. A.;
Kendall, J. T.; Russel, J. S. Tetrahedron 2003, 49, 9849-9856. (i)
Concello´n, J. M.; Sua´rez, J. R.; Garc´ıa-Granda, S.; D´ıaz, M. R. Angew.
Chem., Int. Ed. 2004, 43, 4333-4336. (j) Hodgson, D. M.; Humphreys, P.
G.; Ward, J. G. Org. Lett. 2005, 7, 1153-1156.
(11) Addition of a ligand such as TMEDA (up to 3.0 equiv) has no effect
on the final result.
(12) (a) Capriati, V.; Florio, S.; Luisi, R.; Salomone, A. Org. Lett. 2002,
4, 2445-2448. (b) Capriati, V.; Degennaro, L.; Favia, R.; Florio, S.; Luisi,
R. Org. Lett. 2002, 4, 1551-1554. (c) Capriati, V.; Florio, S.; Luisi, R.;
Nuzzo, I. J. Org. Chem. 2004, 69, 3330-3335. (d) Florio, S.; Aggarwal,
V.; Salomone, A. Org. Lett. 2004, 6, 4191-4194. (e) Capriati, V.; Florio,
S.; Luisi, R. Synlett 2005, 9, 1359-1369.
(13) (a) Sawyer, J. S.; Macdonald, T. L.; McGarvey, G. J. J. Am. Chem.
Soc. 1984, 106, 3376-3377. (b) Kessar, S. V.; Singh, P. Chem. ReV. 1997,
97, 721-737.
(14) (a) Pierre, J.-L.; Baret, P.; Arnaud, P. Bull. Soc. Chim. Fr. 1971,
10, 3619-3628. (b) Martino, R.; Lopez, A.; Mathis, R.; Lattes, A. Bull.
Soc. Chim. Fr. (Chim. Mol.) 1976, 1849-1850. (c) Lopez, A.; Gauthier,
M. M.; Martino, R.; Lattes, A. Org. Magn. Reson. 1979, 12, 418-428.
(6) (a) Florio, S.; Troisi, L.; Capriati, V.; Ingrosso, G. Tetrahedron Lett.
1999, 40, 6101-6104. (b) De Vitis, L.; Florio, S.; Granito, C.; Ronzini,
L.; Troisi, L.; Capriati, V.; Luisi, R.; Pilati, T. Tetrahedron 2004, 60, 1175-
1181.
(7) Luisi, R.; Capriati, V.; Florio, S.; Ranaldo, R. Tetrahedron Lett. 2003,
44, 2677-2681.
(8) Luisi, R.; Capriati, V.; Florio, S.; Di Cunto, P.; Musio, B. Tetrahedron
2005, 61, 3251-3260.
(9) Breternitz, H. J.; Schaumann, E. Tetrahedron Lett. 1991, 32, 1299-
1302.
(10) Chow, Y. L.; Bakker, B. H.; Iwai, K. J. Chem. Soc., Chem. Commun.
1980, 521-522.
3750
Org. Lett., Vol. 7, No. 17, 2005