immunogenicity.3b However, the chemical synthesis of
polysialic acids presents a formidable challenge in that the
sialylation reaction often proceeds with low yield, low
R-stereoselectivity, and undesired 2,3-elimination due to an
electron-withdrawing group at the anomeric center, the lack
of a participating auxiliary substituent adjacent to the
anomeric center, and a sterically hindered tertiary anomeric
center.4 Fortunately, recent progress in the development of
sialic acid donors for better R-selectivity has been achieved
with moderate success by modifying the amino protecting
group at the C-5 position5-8 and inserting an auxiliary group
at the C-19 or C-310 position while phosphite,11 sulfide,12
xanthanate13 or hydroxyl group14 was used as a leaving group.
However, for oligosialic acids, the preparation of suitable
donors and acceptors with differentially protected hydroxyl
functions is a laborious task, although effective strategies
have been developed in recent years.4 In view of the
aforementioned points, we investigated whether a homo-
oligosialic acid could be synthesized by iterative glycosy-
lation using a minimum of reaction types; we also measured
the extent to which synthesis could be carried out with
acceptable R-stereocontrol. Here, we report our synthesis of
homooligosialic acids having R2-9 intersialyl linkages.
Before embarking on the synthesis of homooligosialic
acids, we took cognizance of literature precedence to design
appropriate sialyl donor-acceptor combinations for the
proposed synthesis. Over the past several years, it has been
well recognized that replacement of the N-acetyl functional
group at C-5 with N,N-diacetyl (NAc2),5 N-trifluoroacetyl
(NTFA),6 N-2,2,2-trichloroethoxycarbonyl (NTroc),7 or an
azido group8 in the sialyl donor results in higher yields and,
in some cases, better R-selectivity during sialylation. These
groups are also considered to inhibit hydrogen bond forma-
tion between NH at C-5 and OH at C-8/C-9. Thus, the
nucleophilicity of the C-9 OH group can be enhanced, which
would be advantageous if R2-9 sialylation is desired.4c,15
Although several leaving groups at the anomeric center can
enhance the R-selectivity of sialyl donors,11-14 the sulfide-
and phosphite-based donors are most commonly used,11,12
with the sulfide-based donors having the comparative
advantage of being very stable. Conversely, phosphite-based
donors can be activated by a catalytic amount of promoter
(usually TMSOTf) and usually lead to predominant formation
of the R-product during glycosylation.11c On the basis of the
above precedence, TFA and Troc were chosen as protecting
groups at the N-5 of sialic acid, phosphite was used as the
leaving group during sialylation, and thiocresol served as
the protecting group of the anomeric center.
As shown in Figure 1, three phosphite donors with NHAc,
NHTroc, and NHTFA at the C-5 position (1, 2, and 3,
respectively) were tested with regard to their R-selectivities
in sialylation with sulfide acceptors 416 and 5. The results
(3) (a) Jennings, H. J. In Carbohydrate-based Drug DiscoVery; Wong,
C.-H., Ed; Wiley-VCH: Weinheim, 2003; pp 357-380. (b) Verez-Bencome,
V.; Ferna´ndez-Santana, V.; Hardy, E.; Toledo, M. E.; Rodr´ıguez, M. C.;
Heynngnezz, L.; Rodriguez, A.; Baly, A.; Herrera, L.; Izquierdo, M.; Villar,
A.; Valde´s, Y.; Cosme, K.; Deler, M. L.; Montane, M.; Garcia, E.; Ramos,
A.; Aguilar, A.; Medina, E.; Yoran˜o, G.; Sosa, I.; Hernandez, I.; Mart´ınez,
R.; Muzachio, A.; Carmenates, A.; Costa, L.; Cardoso, F.; Campa, C.; Diaz,
M.; Roy, R. Science 2004, 305, 522-525.
(4) (a) Ress, D. K.; Linhardt, R. J. Curr. Org. Synth. 2004, 1, 31-46.
(b) Lin, C.-H.; Lin, C.-C. in The Molecular Immunology of Complex
Carbohydrates 2; Kluwer-Plenum: New York, 2001. (c) Boons, G.-J.;
Demchenko, A. V. Chem. ReV. 2000, 100, 4539-4565.
(5) Demchenko, A. V.; Boons, G.-J. Chem. Eur. J. 1999, 5, 1278-
1283.
(6) (a) Pan, Y.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z. J. Med.
Chem. 2005, 48, 875-883. (b) Meijer, A.; Ellervik, U. J. Org. Chem. 2004,
69, 6249-6256. (c) De Meo, C.; Demchenko, A. V.; Boons, G.-J. J. Org.
Chem. 2001, 66, 5490-5498.
(7) (a) Tanaka, H.; Adachi, M.; Takahashi, T. Chem. Eur. J. 2005, 11,
849-862. (b) Ando, H.; Koike, Y.; Ishida, H.; Kiso, M. Tetrahedron Lett.
2003, 44, 6883-6886.
(8) (a) Lu, K.-C.; Tseng, S.-Y.; Lin, C.-C. Carbohydr. Res. 2002, 337,
755-760. (b) Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. Angew.
Chem., Int. Ed. 2001, 40, 2900-2903. (c) Scneider, R.; Freyhardt, C. C.;
Schmidt, R. R. Eur. J. Org. Chem. 2001, 9, 1655-1661.
(9) (a) Ishiwata, A.; Ito, Y. Synlett 2003, 9, 1339-1343. (b) Haberman,
J. M.; Gin, D. Y. Org. Lett. 2001, 3, 1665-1668. (c) Takahashi, T.;
Tsukamoto, H.; Yamada, H. Tetrahedron Lett. 1997, 38, 8223-8236.
(10) (a) Castro-Palomino, J. C.; Tsvetkov, Y. E.; Schmidt, R. R. J. Am.
Chem. Soc. 1998, 120, 5434-5440. (b) Martichonok, V.; Whitesides, G.
M. J. Am. Chem. Soc. 1996, 118, 8187-8191. (c) Erce´govec, T.;
Magnusson, G. J. Org. Chem. 1996, 61, 179-184. (d) Ito, Y.; Numata,
M.; Sugimoto, M.; Ogawa, T. J. Am. Chem. Soc. 1989, 111, 8508-8510.
(e) Kondo, T.; Abe, H.; Goto, T. Chem. Lett. 1988, 1657-1660.
(11) (a) Martin, T. J.; Schmidt, R. R. Tetrahedron Lett. 1992, 33, 6123-
6126. (b) Kondo, H.; Ichikawa, Y.; Wong, C.-H. J. Am. Chem. Soc. 1992,
114, 8748-8750.
(12) (a) Zhang, Z.; Ollmann, I. R.; Ye, X.; Wischnat, R.; Baasov, T.;
Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734-753. (b) Nicolaou, K. C.;
Ueno, H. In PreparatiVe Carbohydrate Chemistry; Hanessian, S., Ed.;
Marcel Dekker: New York, 1997; pp 313-338. (c) Hasegawa, A. In
Modern Methods in Carbohydrate Synthesis; Khan, S., O’Neill, R., Eds.;
Harwood Academic Publishers: New York, 1996; pp 277-300.
(13) Marra, A.; Sinay, P. Carbohydr. Res. 1989, 187, 35-42.
(14) Haberman, J. M.; Gin, D. Y. Org. Lett. 2003, 5, 2539-2541.
Figure 1. Acceptors, donors, and products of sialylation.
of sialylations were shown in Table 1 The reaction between
bulky acceptor 4 and 1 yielded the elimination product only
(15) Castro-Palomino, J. C.; Tsvetkov, Y. E.; Schneider, R.; Schmidt,
R. R. Tetrahedron Lett. 1997, 38, 6837-6840.
(16) Chen, M.-Y.; Patkar, L. N.; Lu, K.-C.; Lee, A. S.-Y.; Lin, C.-C.
Tetrahedron Lett. 2004, 60, 11465-11475.
4170
Org. Lett., Vol. 7, No. 19, 2005