C O M M U N I C A T I O N S
Acknowledgment. We thank Dr. T. Nagashima at Fluorous
Technologies for a kind donation of fluorous silica gel, and H. Jin
at the ISU Microarray Facility. This material is based in part upon
work supported by the National Science Foundation under CAREER
Grant No. 0349139. N.L.P. is a Cottrell Scholar of Research
Corporation and an Alfred P. Sloan Research Fellow.
Supporting Information Available: Experimental details, including
1
copies of H NMR spectra, for the synthesis and production of the
carbohydrate microarrays and the complete ref 2h. This material is
Figure 2. Fluorescence images of arrayed carbohydrates probed with FITC-
labeled lectins. Columns of 4 spots each of 2, 1, 0.5, and 0.1 mM
carbohydrates were incubated for 20 min with FITC-ConA (top) or FITC-
ECA with 1% TWEEN-20 detergent (bottom) with BSA.
References
After synthesis of the requisite fluorous-tagged sugars, the next
challenge was to find a suitable fluorinated surface. Solutions of
each sugar were spotted onto a commercially available glass
microscope slide coated with a Teflon/epoxy mixture employing a
standard robot used for DNA arraying. The spots were dried,
incubated with a solution of the fluorescein isothiocyanate-labeled
jack bean lectin concanavalin A (FITC-ConA) for 20 min, rinsed
repeatedly with assay buffer and distilled water, and then scanned
with a standard fluorescent slide scanner. The scan clearly showed
binding of FITC-ConA only to the mannose-containing spots. The
anomeric position could be distinguished as the â-linked GlcNAc
(2) was not recognized.
This lectin experiment demonstrated the ability of the C8F17 tail
to anchor the carbohydrates to the slide surface even after repeated
washes. However, the slide was also intrinsically and unevenly
fluorescent at 488 nM, a wavelength that is commonly used to detect
labeled analytes. Clearly, a new approach was necessary to obtain
an optically and fluorescently clear surface for the formation of
compound microarrays. To this end, a glass microscope slide was
reacted14 with a fluoroalkylsilane to provide a clear coating on which
water forms beads.
With the new microarray substrate in hand, we next probed the
scope of a fluorous-based microarray approach for compound
screening. Fluorous-tagged sugars were spotted on the coated slide
using an arraying robot, and then the slides were incubated with
FITC-labeled lectins (Figure 2). To test the reproducibility of the
process, the same concentration of sugar was spotted repeatedly.
In addition, several different concentrations of sugars were spotted.
To test the ability of the array to withstand detergents often included
in biological screens, the labeled plant lectin from the bush
Erythrina crystagalli (FITC-ECA) was used to probe the microar-
rays with Tween-20. The array withstood the 20 min incubation
time and repeated rinsing with this detergent-containing buffer.
A fluorous-based microarray method allows the facile formation
of a range of carbohydrate chips for the plant and other sciences
using synthetic sugars produced with the aid of fluorous-tagged
synthesis. Efforts are underway to automate portions of the solution-
phase fluorous-based synthetic process and to incorporate enzymatic
steps to expand the scope of carbohydrates that can be easily arrayed
for biological screening. Although not limited to carbohydrates,
the approach should be especially valuable for the production of
arrays containing compounds, such as glycosaminoglycan frag-
ments, that contain nucleophiles that complicate current defined
covalent attachment strategies.
(1) For example, see: (a) Tomizaki, K.; Usui, K.; Mihara, H. ChemBioChem
2005, 6, 782-799. (b) Niemeyer, C. M.; Blohm, D. Angew. Chem., Int.
Ed. 1999, 39, 2865-2869. (c) Schena, M.; Shalon, D.; Heller, R.; Chai,
A.; Brown, P. O.; Davis, R. W. Proc. Natl. Acad. Sci. U.S.A. 1996, 93,
10614-10619.
(2) (a) Shin, I.; Lee, M. Angew. Chem., Int. Ed. 2005, 44, 2881-2884. (b)
Biskup, M.; Muller, J. U.; Weingart, R.; Schmidt, R. R. ChemBioChem
2005, 6, 1007-1015. (c) Adams, E. W.; Ratner, D. M.; Bokesch, H. R.;
McMahon, J. B.; O’Keefe, B. R.; Seeberger, P. H. Chem. Biol. 2004, 11,
875-881. (d) Disney, M. D.; Seeberger, P. H. Chem. Biol. 2004, 11,
1701-1707. (e) Bryan, M.; Fazio, F.; Lee, H.; Huang, C.; Chang, A.;
Best, M.; Paulson, J. C.; Burton, D.; Wilson, L.; Wong, C.-H. J. Am.
Chem. Soc. 2004, 126, 8640-8641. (f) Ratner, D. M.; Adams, E. W.; Su,
J.; O’Keefe, B. R.; Mrksich, M.; Seeberger, P. H. ChemBioChem 2004,
5, 379-383. (g) Park, S.; Lee, M.; Pyo, S.; Shin, I. J. Am. Chem. Soc.
2004, 126, 4812-4819. (h) Blixt, O. et al. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 17033-17038. (i) Ko¨hn, M.; Wacker, R.; Peters, C.; Schro¨der,
H.; Soule`re, L.; Breinbauer, R.; Niemeyer, C. M.; Waldmann, H. Angew.
Chem., Int. Ed. 2003, 42, 5830-5834. (k) Schwarz, M.; Spector, L.;
Gargir, A.; Shevti, A.; Gortler, M.; Altstock, R. T.; Dukler, A. A.; Dotan,
N. Glycobiology 2003, 13, 749-754. (l) Park, S.; Shin, I. Angew. Chem.,
Int. Ed. 2002, 41, 3180-3182.
(3) (a) Bauer, J.; Rademann, J. J. Am. Chem. Soc. 2005, 127, 7296-7297.
(b) Fang, Y.; Frutos, A. G.; Lahiri, J. Langmuir 2003, 19, 1500-1505.
(c) Bryan, M. C.; Plettenburg, O.; Sears, P.; Rabuka, D.; Wacowich-Sgarbi,
S.; Wong, C.-H. Chem. Biol. 2002, 9, 713-720. (d) Fazio, F.; Bryan, M.
C.; Paulson, J. C.; Wong, C.-H. J. Am. Chem. Soc. 2002, 124, 14397-
14402.
(4) (a) Brittain, S. M.; Ficarro, S. B.; Brock, A.; Peters, E. C. Nat. Biotechnol.
2005, 23, 463-468. (b) Zhang, W. Chem. ReV. 2004, 104, 2531-2556.
(c) de Visser, P. C.; van Helden, M.; Filippov, D. V.; van der Marel, G.
A.; Drijfhout, J. W.; van Boom, J. H.; Noort, D.; Overkleeft, H. S.
Tetrahedron Lett. 2003, 44, 9013-9016. (d) Filippov, D. V.; van Zoelen,
D. J.; Oldfield, S. P.; van der Marel, G. A.; Overkleeft, H. S.; Drijfhout,
J. W.; van Boom, J. H. Tetrahedron Lett. 2002, 43, 7809-7812.
(5) (a) Manzoni, L.; Castelli, R. Org. Lett. 2004, 6, 4195-4198. (b) Jing, Y.;
Huang, X. Tetrahedron Lett. 2004, 45, 4615-4618. (c) Manzoni, L. Chem.
Commun. 2003, 2930-2931. (d) Curran, D. P. Synlett 2001, 1488-1496.
(6) Henrissat, B.; Coutinho, P. M.; Davies, G. J. Plant Mol. Biol. 2001, 47,
55-72.
(7) Lis, H.; Sharon, N. Chem. ReV. 1998, 98, 637-674.
(8) Schmidt, R. R.; Michel, J. Angew. Chem. 1980, 92, 763-764.
(9) (a) Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32, 3353-3356.
(b) Ren, T.; Zhang, S.; Depke, G.; Vierhufe, H. Tetrahedron Lett. 2001,
42, 1007-1010.
(10) (a) Schmidt, R. R.; Kinzy, W. AdV. Carbohydr. Chem. Biochem. 1994,
50, 21-123. (b) Choudhury, I.; Minoura, N.; Uzawa, H. Carbohydr. Res.
2003, 338, 1265-1270.
(11) Pohl, N. L.; Kiessling, L. L. Tetrahedron Lett. 1997, 38, 6985-6988.
(12) For examples, see: (a) Amer, H.; Hofinger, A.; Kosma, P. Carbohydr.
Res. 2003, 338, 35-45. (b) Plante, O. J.; Palmacci, E. R.; Andrade, R.
B.; Seeberger, P. H. J. Am. Chem. Soc. 2001, 123, 9545-9554. (c)
Flowers, H. M. Carbohydr. Res. 1983, 119, 75-84.
(13) Khattuntseva, E. A.; Ustuzhanina, N. E.; Zatonskii, G. V.; Shashkov, A.
S.; Usov, A. I.; Nifant’ev, N. E. J. Carbohydr. Chem. 2000, 19, 1151-
1173.
(14) Maoz, R.; Sagiv, J. J. Colloid Interface Sci. 1984, 100, 465-496.
JA054811K
9
J. AM. CHEM. SOC. VOL. 127, NO. 38, 2005 13163