Royal Netherlands Academy of Arts and Science (KNAW) for
financial support.
Conclusions
The results shown in here demonstrate that noncovalent
hydrogen-bonded double rosettes with different functionalities
in the building blocks can be formed in MeOH–CHCl3 solvent
mixtures. In general, increase of the solvent polarity leads to
destabilization of the assemblies.
Furthermore, the functionalities strongly influence the stabil-
ity of the double rosettes. Steric hindrance close to the rosette
platform exerted by the functional groups of the building blocks
decreases the stability. Aminoalkyl groups decrease the stability
compared to n-alkyl functionalities. For linear aminoalkyl
groups, it was observed that the chain length does not affect
the stability. The stability of the double rosettes bearing pyridyl
groups is comparable to the stabilities of assemblies with
aminoalkyl groups. The ureido functionalized double rosette
is the most stable.
Double rosettes with protected glucosyl and cellobiosyl
moieties are also formed quantitative in neat chloroform, while
assemblies with unprotected glucosyl and cellobiosyl moieties
are formed for only ca. 80%. Carbohydrate moieties lead to a
dramatic decrease in stability of double rosettes in polar solvents
when compared to double rosettes having alkyl, aminoalkyl,
pyridyl or ureido moieties.
Double rosettes with amino acid or peptide functionalities
are more stable than double rosettes with carbohydrate moieties
in polar solvents. The stability of double rosettes with different
amino acid functionalities in polar solvents strongly depends on
the barbiturate or cyanurate derivative. In all cases, assemblies
with DEB are less stable than those with cyanurates. Assemblies
of amino acid ester functionalized dimelamines 6a–d with
BuCYA or BzCYA are stable up to at least 50% of methanol
in chloroform, while double rosettes with the more bulky
branched (R)-PhEtCYA have vMeOH values of 40%. Assemblies
with different lysine derivatives showed that free amino groups
or free carboxylic acid groups within the assembly decrease the
stability, probably due to ionic or electronic influences.
In apolar solvents, di- and tripeptide peptide functionalized
assemblies are less stable compared to single amino acid
functionalized assemblies. Amino acids at the first position of
the peptide functionalities do not seem to affect the stability
of double rosettes (at 1 mM), while amino acids at the second
position decrease the stability of double rosette assemblies. This
decrease in stability becomes larger when bulkier amino acids
are present in the second position. The introduction of a third
amino acid hardly influences the stability of the double rosettes.
Assembly formation in neat MeOH is observed only when
bulky amino acids are present at the second (and third) position.
This would indicate that the introduction of larger and/or
bulkier peptides might stabilize double rosettes in polar solvents.
This behavior is important for host–guest recognition in aqueous
solvents.
Overall, the large range of functionalities that can be intro-
duced on the rosette platform allows a large molecular diversity.
This is useful to generate hydrogen-bonded receptor assemblies
that resemble the natural antibodies. Introduction of large
diverse peptides to the double rosettes seems therefore especially
attractive because they might mimic the binding sites of these
natural receptors. Recently we showed that it is possible to form
double rosettes also in bilayer membranes.23 The stability of the
double rosettes is larger in the bilayer membranes compared
to polar solutions. Efforts to integrate the hydrogen-bonded
assemblies studied here as bilayer membrane receptors are
currently ongoing in our laboratory.
References
1 (a) R. Fiammengo, M. Crego-Calama and D. N. Reinhoudt, Curr.
Opin. Chem. Biol., 2001, 5, 660–673; (b) M. Crego-Calama and D. N.
Reinhoudt, Science, 2002, 295, 2403–2407.
2 G. M. Whitesides, E. E. Simanek, J. P. Mathias, C. T. Seto, D. N.
Shin, M. Mammen and D. M. Gordon, Acc. Chem. Res., 1995, 28,
37–44.
3 (a) E. Benjamini, G. Sunshine, S. Leskowitz, Immunology, A Short
Course, 3rd edn, Wiley, New York, 1996; (b) L. Stryer, Biochemistry,
4th edn, Freeman and Company: New York, 1995.
4 P. Timmerman and D. N. Reinhoudt, Adv. Mater., 1999, 11, 71–74.
5 (a) R. H. Vreekamp, R. H. Van Duynhoven, M. Hubert, W. Verboom
and D. N. Reinhoudt, Angew. Chem., Int. Ed., 1996, 35, 1215–1218;
(b) P. Timmerman, K. A. Jollife, M. Crego-Calama, J. L. Weidmann,
L. J. Prins, F. Cardullo, B. H. M. Snellink-Ruel, R. H. Fokkens,
N. M. M. Nibbering, S. Shinkai and D. N. Reinhoudt, Chem. Eur. J.,
2000, 6, 4104–4115.
6 J. M. C. A. Kerckhoffs, M. Crego-Calama, I. Luyten, P. Timmerman
and D. N. Reinhoudt, Org. Lett., 2000, 2, 4121–4124.
7 (a) C. T. Seto and G. M. Whitesides, J. Am. Chem. Soc., 1990, 112,
6409–6411; (b) J. A. Zerkowski, C. T. Seto, D. A. Wierdo and G. M.
Whitesides, J. Am. Chem. Soc., 1990, 112, 9025–9026.
8 P. Timmerman, R. H. Vreekamp, R. Hulst, W. Verboom, D. N.
Reinhoudt, K. Risannen, K. A. Udachin and J. Ripmeester, Chem.
Eur. J., 1997, 3, 1823–1832.
9 J. M. C. A. Kerckhoffs, M. Crego-Calama, I. Luyten, P. Timmerman
and D. N. Reinhoudt, Org. Lett., 2000, 2, 4121–4124.
10 T. Ishi-i, M. Crego-Calama, P. Timmerman, D. N. Reinhoudt and S.
Shinkai, J. Am. Chem. Soc., 2002, 124, 14631–14641.
11 (a) I. Yamamoto, K. Fukui, S. Yamamoto, K. Ohta and K.
Matsuzaki, Synthesis, 1985, 686–688; (b) H. Ogura and H.
Takahashi, Heterocycles, 1982, 87–90; (c) G. V. Oshovsky, W.
Verboom, R. H. Fokkens and D. N. Reinhoudt, Chem. Eur. J., 2004,
10, 2739–2748.
12 (a) P. Timmerman and L. J. Prins, Eur. J. Org. Chem., 2001,
17, 3191–3205; (b) D. N. Reinhoudt, P. Timmerman, F. Cardullo,
M. Crego-Calama, NATO Science Series C, vol 257, ed. R. Un-
garo, E. Dalcanale, Kluwer Academic Publishers, Dordrecht, 1999;
pp. 181–195.
13 The percentage of assembly was determined by comparison of the
Ha + Hb intensity with the ArCH2Ar of the calix[4]arene part.
Assembly 1a3·(DEB)6 is used as standard, for which this ratio was
arbitrarily set to 100%.
14 K. A. Jolliffe, M. Crego-Calama, R. Fokkens, N. M. M. Nibbering,
P. Timmerman and D. N. Reinhoudt, Angew. Chem., Int. Ed., 1998,
37, 1247–1251.
15 Detailed analyses of energetic parameters are described in M. G. J.
Ten Cate, J. Huskens, M. Crego-Calama and D. N. Reinhoudt, Chem.
Eur. J., 2004, 10, 3632–3639.
16 M. Mammen, E. E. Simanek and G. M. Whitesides, J. Am. Chem.
Soc., 1996, 118, 12614–12623.
17 (a) L. J. Prins, K. A. Jolliffe, R. Hulst, P. Timmerman and D. N.
Reinhoudt, J. Am. Chem. Soc., 2000, 122, 3617–3627; (b) L. J. Prins,
J. Huskens, F. De Jong, P. Timmerman and D. N. Reinhoudt, Nature,
1999, 398, 498–502; (c) L. J. Prins, F. De Jong, P. Timmerman and
D. N. Reinhoudt, Nature, 2000, 408, 181–184.
18 (a) A. Varki, Glycobiology, 1993, 3, 97–130; (b) R. A. Dwek, Chem.
Rev., 1996, 96, 683–720; (c) M. Mammen, S.-K. Choi and G. M.
Whitesides, Angew. Chem., Int. Ed., 1998, 37, 2754–2794.
19 A. G. Bielejewska, C. E. Marjo, L. J. Prins, P. Timmerman, F. De
Jong and D. N. Reinhoudt, J. Am. Chem. Soc., 2001, 123, 7518–7533.
20 L. J. Prins, Non-Covalent Synthesis of Chiral Hydrogen-Bonded
Assemblies, University of Twente, Enschede, The Netherlands, ISBN
90-365-1627-7, 2001.
21 Occasionally, double rosette formation could be observed with 1H
NMR spectroscopy, but these assemblies are hardly CD active
because either the opposite chirality inducing components strongly
affect the orientation of the chromophores responsible for the CD
activity or coincidentally cause opposite CD activity of identical
intensity.
22 K. K. L. Cheuk, J. W. Y. Lam, L. M. Lai, Y. Dong and B. Z. Tang,
Macromolecules, 2003, 36, 9752–9762.
23 M. G. J. Ten Cate, M. Crego-Calama and D. N. Reinhoudt, J. Am.
Chem. Soc., 2004, 126, 10840–10841.
Acknowledgements
Dr M. G. J. ten Cate and Dr M. Crego-Calama acknowledge
the Technology Foundation of the Netherlands (CW-STW) and
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 3 7 2 7 – 3 7 3 3
3 7 3 3