10.1002/ejoc.201901279
European Journal of Organic Chemistry
COMMUNICATION
chromatography with petroleum/ethyl acetate as the eluent to afford the
desired product.
100
90
80
70
60
50
40
30
20
10
0
91
88
87
86
85
Acknowledgements
We thank Prof. Yong Wu for helpful discussions and preliminary
experiments. This work was supported by the National Natural
Science Foundation of China (grant number 81573286, 81373259
and 81773577).
Conflict of interest
1
2
3
4
5
Cycle
The authors declare no conflict of interest.
Figure 1. Recycling study results.
Keywords: Csp3-H Carbenoid Insertion • diastereoselectivity •
Ionic Liquids • Recyclable catalyst system
Structurally, ionic liquids are similar to N-heterocyclic carbenes
(NHCs), which are outstanding nucleophilic catalysts in organic
synthesis and electron-rich ligands in transition-metal-catalyzed
transformations.[13] Among these reactions, free carbene is
necessary because it can form complexes with metals, so we
studied a 2-substituted ionic liquid and found that this procedure
was still tolerated (Table 1, entry 6). This result indicated that ionic
liquid we used may just act as solvent or PTC in this system. On
the basis of the above results (Table 1, Entries 1-6) and previous
reports, [9e, 9f] it seems that anions in ionic liquid play a crucial role
as solvent in the stereoselectivity even though the effect was not
very clear.
[1]
a) P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301-312; b) H. C.
Erythropel, J. B. Zimmerman, T. M. de Winter, L. Petitjean, F. Melnikov,
C. H. Lam, A. W. Lounsbury, K. E. Mellor, N. Z. Janković, Q. Tu, L. N.
Pincus, M. M. Falinski, W. Shi, P. Coish, D. L. Plata, P. T. Anastas, Green
Chem. 2018, 20, 1929-1961.
[2]
[3]
T. Welton, Proc. R. Soc. A 2015, 471, 20150502.
a) J. Dupont, R. F. de Souza, P. A. Z. Suarez, Chem. Rev. 2002, 102,
3667-3692; b) K. Ghandi, Green Sustainable Chem. 2014, 04, 44-53; c)
J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508-3576; d) X. Han, D.
W. Armstrong, Org. Lett. 2005, 7, 4205-4208; e) J. Li, S. Yang, W. Wu,
H. Jiang, Chem. Commun. 2014, 50, 1381-1383; f) C. Maton, N. De Vos,
C. V. Stevens, Chem. Soc. Rev. 2013, 42, 5963-5977; g) N. V. Plechkova,
K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123-150; h) H. M. Savanur, R.
G. Kalkhambkar, K. K. Laali, Appl. Catal., A 2017, 543, 150-161; i) R.
Sharma, M. Abdullaha, S. B. Bharate, J. Org. Chem. 2017, 82, 9786-
9793; j) R. G. Soengas, V. L. M. Silva, J. Pinto, H. Rodríguez-Solla, A.
M. S. Silva, Eur. J. Org. Chem. 2016, 2016, 99-107.
Conclusions
In summary, we have developed a recyclabe strategy of
bidentate-assisted Csp3-H carbenoid insertion using Cp*Rh(III)/IL
catalytic medium with advantages of lower temperature and better
diastereoselectivity. This procedure tolerates various kinds of
amine-based substrates and provides an effective approach to
diverse beta-amino esters. Moreover, this strategy could enrich
the reaction types using ionic liquids as solvents, in which the
stereoselectivities are enhanced. In terms of DG-assisted Csp3-H
functionalizations, we believe that this discovery would be
conductive to more extensive use of ionic liquids as solvents for
enhancing stereoselectivity.
[4]
[5]
a) F. Wang, S. Tang, H. Ma, L. Wang, X. Li, B. Yin, Chin. J. Chem. 2014,
32, 1225-1232; b) H. B. Wang, Y.-L. Hu, D.-J. Li, J. Mol. Liq. 2016, 218,
429-433.
a)M. M. Dell' Anna, V. Gallo, P. Mastrorilli, C. F. Nobile, G. Romanazzi,
G. P. Suranna, Chem. Commun. 2002, 434-435; b)H. T. Yoshitaka
Hamashima, Daido Hotta, and Mikiko Sodeoka, Org. Lett. 2003, 5, 3225-
3228.
[6]
[7]
P. Sledz, M. Mauduit, K. Grela, Chem. Soc. Rev. 2008, 37, 2433-2442.
a) S. Lv, Y. Li, T. Yao, X. Yu, C. Zhang, L. Hai, Y. Wu, Org. Lett. 2018,
20, 4994-4997; b) Q. Ma, X. Yu, R. Lai, S. Lv, W. Dai, C. Zhang, X. Wang,
Q. Wang, Y. Wu, ChemSusChem 2018, 11, 3672-3678; c) F. Mou, Y.
Sun, W. Jin, Y. Zhang, B. Wang, Z. Liu, L. Guo, J. Huang, C. Liu, RSC
Adv. 2017, 7, 23041-23045; d) S. B. Park, H. Alper, Chem. Commun.
2005, 1315-1317; e) C. Zhang, X.-M. Chen, Y. Luo, J.-L. Li, M. Chen, L.
Hai, Y. Wu, ACS Sustainable Chem. Eng. 2018, 6, 13473-13479.
a) O. Basle, N. Borduas, P. Dubois, J. M. Chapuzet, T. H. Chan, J.
Lessard, C. J. Li, Chem. Eur. J. 2010, 16, 8162-8166; b) M. Ferrari Bach,
C. Herzer Griebeler, C. Gross Jacoby, P. H. Schneider, Eur. J. Org.
Chem. 2017, 2017, 6997-7004; c) V. Gallo, P. Mastrorilli, C. F. Nobile, R.
Paolillo, N. Taccardi, Eur. J. Inorg. Chem. 2005, 2005, 582-588.
a) C. Chiappe, D. Capraro, V. Conte, D. Pieraccini, Org. Lett. 2001, 3,
1061-1063; b) C. Chiappe, E. Leandri, D. Pieraccini, Chem. Commun.
2004, 2536-2537; c) P. Goodrich, H. Q. Nimal Gunaratne, L. Hall, Y.
Wang, L. Jin, M. J. Muldoon, A. P. Ribeiro, A. J. Pombeiro, V. I.
Experimental Section
[8]
[9]
General procedure for the synthesis of 3a: To a test tube with a
magnetic stir bar were added picolinamide 1a (0.15 mmol), α-diazo-β-
ketoester 2a (0.225 mmol, 1.5 eq.), [Cp*RhCl2]2 (5 mol %), AgOAc (20
mol %) and [BMIM]BF4 (0.5 mL ) under Ar atmosphere. The reaction
mixture was stirred at 60 °C for 24 h. Afterward, the mixture was extracted
with diethyl ether (5 × 1mL). The organic solvents were removed under
reduced pressure and the residue was purified by silica gel column
This article is protected by copyright. All rights reserved.