D. Conreaux et al. / Tetrahedron Letters 46 (2005) 7917–7920
7919
12. AcOH gives better results compared to H2SO4 used in the
original synthesis. See, Yano, S.; Ohno, T.; Ogawa, K.
Heterocycles 1993, 36, 145–148.
In conclusion, we have described an efficient protocol for
the selective N-alkylation of 4-alkoxy-2-pyridones,
which also holds promise for the alkylation of 2-pyri-
dones in general. We have also established an alternative,
practical procedure for the synthesis of 4-methoxy-1-
methyl-2-pyridone 1, a versatile building block in hetero-
cycle synthesis. The method is particularly well suited for
the preparation of 1 in multi-gram scale.
13. Addition of n-Bu4NI probably results in the formation of
a 2-pyridone anion loosely associated with a quaternary
ammonium counteranion through anion exchange, which
enhances its reactivity toward alkylation. See, Czernecki,
S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett.
1976, 17, 3535–3536. It is worth to note that alkylation of
4-hydroxy-2-pyridone (4) failed under identical conditions
due most probably to its low solubility in the reaction
solvent.
Acknowledgments
´
14. See: Najera, C.; Yus, M. Tetrahedron 1999, 55, 10547–
This research was assisted financially by a grant to D.C.
and E.B. from Bayer CropScience and the Centre
National de la Recherche Scientifique.
10658, and references cited therein.
15. Lee, G.; Choi, E.; Lee, E.; Pak, C. Tetrahedron Lett. 1993,
34, 4541–4542.
16. Sheehan, S.; Padwa, A. J. Org. Chem. 1997, 62, 438–439.
17. Caddick, S.; Khan, S. Tetrahedron Lett. 1993, 34, 7469–
7470.
18. Clayden, J.; Julia, M. J. Chem. Soc., Chem. Commun.
1993, 1682–1683.
19. Wrobel, Z. Tetrahedron 1998, 54, 2607–2618. When
applied to 2 the reaction afforded the corresponding
saturated dealkoxylactam:
References and notes
1. (a) Josein, H.; Ko, S.-B.; Bom, D.; Curran, D. P. Chem.
Eur. J. 1998, 4, 67–83; (b) Comins, D. L.; Saha, J. K.
J. Org. Chem. 1996, 61, 9623–9624; (c) Comins, D. L.;
Nolan, J. M. Org. Lett. 2001, 3, 4255–4257.
2. (a) Villemin, D.; Liao, L. Tetrahedron Lett. 1996, 37,
8733–8734; (b) Lazaar, J.; Hoarau, C.; Mongin, F.;
SO2Ph
10 equiv. NaBH4
´
´
Trecourt, F.; Godard, A.; Queguiner, G.; Marsais, F.
2
Tetrahedron Lett. 2005, 46, 3811–3813.
DMF, RT
55%
N
O
3. Buck, J.; Madeley, J. P.; Pattenden, G. J. Chem. Soc.,
Perkin Trans. 1 1992, 1, 67–77.
Me
4. (a) Dolle, R. E.; Nicolaou, K. C. J. Am. Chem. Soc. 1985,
107, 1695–1698; (b) Vogeley, L.; Palm, G. J.; Mesters, J.
R.; Hilgenfeld, R. J. Biol. Chem. 2001, 276, 17149–17155.
5. For recent efforts made in this area, see: (a) Comins, D.;
Jianhua, G. Tetrahedron Lett. 1994, 35, 2819–2822; (b)
Rico, I.; Halvorsen, K.; Dubrule, C.; Lattes, A. J. Org.
Chem. 1994, 59, 415–420; (c) Liu, H.; Ko, S. B.; Josien, H.;
Curran, D. P. Tetrahedron Lett. 1995, 36, 8917–8920; (d)
Almena, I.; Diaz-Ortiz, A.; Diez-Barra, E.; de la Hoz, A.;
Loupy, A. Chem. Lett. 1996, 5, 333–334; (e) Sato, T.;
Yoshimatsu, K.; Otera, J. Synlett 1995, 845–846; (f)
Bowman, W. R.; Bridge, C. F. Synth. Commun. 1999, 29,
4051–4059; (g) Nadin, A.; Harrison, T. Tetrahedron Lett.
1999, 40, 4073–4076; (h) Sugahara, M.; Moritani, Y.;
Kuroda, T.; Kondo, K.; Shimadzu, H.; Ukita, T. Chem.
Pharm. Bull. 2000, 48, 589–591; (i) Janin, Y. L.; Huel, C.;
Flad, G.; Thirot, S. Eur. J. Org. Chem. 2002, 1763–1769;
(j) Ruda, M. C.; Bergman, J.; Wu, J. J. Comb. Chem. 2002,
4, 530–535.
6. For an illustration, see: Bossharth, E.; Desbordes, P.;
Monteiro, N.; Balme, G. Org. Lett. 2003, 5, 2441–2444.
7. (a) Sugasawa, T.; Sasakura, K.; Toyoda, T. Chem. Pharm.
Bull. 1974, 22, 763–770; (b) Chiba, T.; Kato, T.; Yoshida,
A.; Moroi, R.; Shimomura, N.; Momose, Y.; Naito, T.;
Kaneko, C. Chem. Pharm. Bull. 1984, 32, 4707–4720; (c)
Fujiwara, T.; Tanaka, N.; Tanaka, K.; Toda, F. J. Chem.
Soc., Perkin Trans. 1 1989, 3, 663–664; See also (d)
Sieburth, S. McN.; Lin, C.-H.; Rucando, D. J. Org. Chem.
1999, 64, 950–953, and references cited therein.
20. Bremner, J.; Julia, M.; Launay, M.; Stacino, J. P.
Tetrahedron Lett. 1982, 23, 3265–3266.
21. Experimental part: Preparation of 1 from phenylsulfonyl-
acetonitrile 6:
3-Methoxy-2-(phenylsulfonyl)but-2-enenitrile (7): Phenyl-
sulfonylacetonitrile (1.9 g, 10.5 mmol) and 1,1,1-trimeth-
oxyethane (1.5 g, 12.5 mmol) were placed in a round-
bottomed flask fitted with a distillation apparatus. The
mixture was heated with stirring until a gentle distillation
of methanol started (oil bath heated to approx. 100 ꢁC).
Once distillation ceased, the mixture was allowed to reach
room temperature, at which point it solidified. The solid
residue was taken up in methanol (20 mL) and the
resulting suspension was cooled to ꢀ20 ꢁC and let to
stand for 2 h at that temperature. The precipitate was
collected by suction filtration, washed with cold methanol
(5 mL), and dried under vacuum to yield 2.2 g (90%) of 7
as a colorless solid (1:1 mixture of E and Z isomers).
NMR data were in agreement with that reported in the
literature.26
5-(Dimethylamino)-3-methoxy-2-(phenylsulfonyl)penta-
2,4-dienenitrile (8): A neat mixture of 7 (1.02 g, 3.5 mmol)
and N,N-dimethyl formamide dimethyl acetal (0.63 g,
5.3 mmol) was heated at 140 ꢁC for 3 h. The mixture was
then allowed to reach room temperature and concentrated
in vacuo to give a reddish oil, which was subjected to
column chromatography (silica gel; ethyl acetate–petro-
leum ether: 55:45) to afford 8 as a pale yellow solid
1
8. Related 3-sulfonyl-2-pyridones have been reported to
possess interesting biological properties: Dunbar, J. E.;
Harris, R. F.; McCarthy, J. R., Jr.; US Patent US
3,847,927, 1974.
9. Winterstein, E.; Keller, J.; Weinhagen, A. B. Arch. Pharm.
1917, 255, 513–539.
(720 mg, 70%). Mp 147 ꢁC. H NMR (300 MHz, CDCl3):
2.96 (s, 3H); 3.21 (s, 3H); 3.93 (s, 3H); 5.20 (br s, 1H);
7.49–7.51 (m, 4H); 7.96 (d, J = 6.7 Hz, 2H). 13C NMR
(75 MHz, CDCl3): 37.61; 46.01; 61.17; 85.19; 86.91; 117.5;
126.90; 128.83; 132.58; 143.67; 154.32; 178.56.
4-Methoxy-3-(phenylsulfonyl)pyridin-2(1H)-one (9):
A
10. Yuldashev, P. Kh. Chem. Nat. Compd. 2001, 37, 274–275.
11. Mittelbach, M.; Katsner, G.; Junek, H. Monatsh. Chem.
1984, 115, 1467–1470; Mittelbach, M.; Katsner, G.; Junek,
H. Arch. Pharm. 1985, 318, 481–486.
solution of 8 (5.04 g, 19.0 mmol) in 80% aq acetic acid
(25 mL) was refluxed for 4 h. The reaction mixture, which
solidified upon cooling to room temperature, was diluted
with ethyl acetate (10 mL) and cooled in ice water. The