C O M M U N I C A T I O N S
Table 2. Preparation of Macrocycles from Internal Alkynes
in size, as with 2 and especially 3, interactions between the ligand
and RL force complexation to occur such that RL is placed distal to
the ligand (11), favoring formation of the exocyclization product
(entries 3 and 4).
In summary, this communication reports the first examples of
Ni-catalyzed macrocyclizations of ynals containing terminal alkynes
and the first examples that involve a ligand-controlled reversal in
regioselection with internal alkynes. Terminal alkynes and aryl
alkynes display substrate control in regioselection that overrides
ligand influences. With aliphatic internal alkynes, addition of the
most hindered alkyne terminus is favored by bulky ligands, whereas
addition of the least hindered alkyne terminus is favored by small
ligands. Application of this ligand-directed regioselection in total
synthesis will be reported in due course.
entry
substrate
conditionsa
R2
product
yield (7:8)
Acknowledgment. The authors wish to acknowledge receipt
of NIH Grant GM-57014. Mani Chaulagain, Kanicha Sa-ei, and
Vanessa Landry are thanked for their contributions.
1
2
3
4
5
6
6a
6a
6b
6b
6b
6b
a
c
a
b
c
d
TES
H
TES
TES
H
8a
8b
7c/8c
7c/8c
7d/8d
7d/8d
68%
48%
60% (1:1)
93% (1:5)
68% (3:1)
89% (4.5:1)
Supporting Information Available: Full experimental details and
copies of NMR spectra (PDF). This material is available free of charge
H
a Conditions: (a) Ni(COD)2 (20 mol %), KOt-Bu (20 mol %), 2 (20
mol %), Et3SiH (5 equiv), toluene (0.006 M), 75 °C, 1 h; (b) Ni(COD)2
(20 mol %), KOt-Bu (20 mol %), 3 (20 mol %), Et3SiH (5 equiv), toluene
(0.006 M), 75 °C, 1 h; (c) Ni(COD)2 (20 mol %), Bu3P (20 mol %), Et3B
(3 equiv), toluene, 60 °C, 16 h; (d) Ni(COD)2 (20 mol %), Me3P (20 mol
%), Et3B (3 equiv), toluene (0.006 M), 60 °C, 16 h.
References
(1) (a) Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593. (b)
Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197. (c) Oppolzer, W.;
Radinov, R. N.; El-Sayed, E. J. Org. Chem. 2001, 66, 4766.
(2) (a) Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc. 1995, 117, 6787. (b)
Takayanagi, Y.; Yamashita, K.; Yoshida, Y.; Sato, F. J. Chem. Soc., Chem.
Commun. 1996, 1725. (c) Kataoka, Y.; Miyai, J.; Oshima, K.; Takai, K.;
Utimoto, K. J. Org. Chem. 1992, 57, 1973. (d) Buchwald, S. L.; Watson,
B. T. J. Am. Chem. Soc. 1987, 109, 2544. (e) Van Wagenen, B. C.;
Huffman, J. C.; Livinghouse, T. Tetrahedron Lett. 1989, 30, 3495. (f)
Bahadoor, A. B.; Flyer, A.; Micalizio, G. C. J. Am. Chem. Soc. 2005,
127, 3694.
Scheme 1. Rationale of Regioselectivity
(3) For representative examples of macrocycle formation via carbon-carbon
bond formation, see: (a) Tius, M. A.; Reddy, N. S. Tetrahedron Lett.
1991, 32, 3605. (b) Doi, T.; Takahashi, T. J. Org. Chem. 1991, 56, 3465.
(c) Marshall, J. A.; Wang, X. J. Org. Chem. 1991, 56, 6264. (d) Kobayashi,
S.; Reddy, R. S.; Sugiura, Y.; Sasaki, D.; Miyagawa, N.; Hirama, M. J.
Am. Chem. Soc. 2001, 123, 2887. (e) Wender, P. A.; Beckham, S.; Mohler,
D. L. Tetrahedron Lett. 1995, 36, 209. (f) Elliott, M. R.; Dhimane, A.;
Malacria, M. J. Am. Chem. Soc. 1997, 119, 3427. (g) Furstner, A.;
Castanet, A.; Radkowski, K.; Lehmann, C. W. J. Org. Chem. 2003, 68,
1521. (h) Kigoshi, H.; Kita, M.; Ogawa, S.; Itoh, M.; Uemura, D. Org.
Lett. 2003, 5, 957. (i) Biswas, K.; Lin, H.; Njardarson, J. T.; Chappell,
M. D.; Chou, T.; Guan, Y.; Tong, W. P.; He, L.; Horwitz, S. B.;
Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 9825. (j) Furstner, A.;
Seidel, G. J. Organomet. Chem. 2000, 606, 75.
(4) For an overview of the development of this area, see: Montgomery, J.
Angew. Chem., Int. Ed. 2004, 43, 3890.
(5) For intramolecular alkylative couplings of ynals, see: (a) Oblinger, E.;
Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (b) Ni, Y.;
Amarasinghe, K. K. D.; Montgomery, J. Org. Lett. 2002, 4, 1743. (c)
Lozanov, M.; Montgomery, J. J. Am. Chem. Soc. 2002, 124, 2106.
(6) For intramolecular reductive couplings of ynals, see refs 5a,c and the
following: (a) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 1999,
121, 6098. (b) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 2000,
122, 6950.
6b, however, varied depending on the ligand system employed.
For example, 6b produced a 1:1 mixture of products with ligand 2
(entry 3). Switching to a bulkier carbene (3) provided the exocyclic
olefin as the major product in a 5:1 ratio (entry 4). The combination
of tributylphosphine and triethylborane9 led to a reversal in
selectivity, with the endocyclic product 7d being favored in a 3:1
ratio (entry 5). This selectivity was further improved with tri-
methylphosphine and triethylborane, which boosted the endocyclic
selectivity to 4.5:1 (entry 6).
The inherent electronic and steric biases of terminal and aryl
alkynes are only minimally impacted by ligand variation. However,
significant variations in regioselectivity with doubly aliphatic-
substituted alkynes may be imparted with ligand control.11 The
orientation in which the alkyne complexes to Ni is dependent upon
both the steric environment around the aldehyde and that surround-
ing the ligand (Scheme 1).12 With a relatively small ligand, such
as Me3P, RS (Me) is placed proximal to the aldehyde as to minimize
interactions between the aldehyde and the alkyne (9). This leads
to internal olefin products (Table 2, entry 6). As the ligand increases
(7) For intermolecular alkylative couplings of alkynes and aldehydes, see refs
5a,b and the following: Qi, X.; Montgomery, J. J. Org. Chem. 1999, 64,
9310.
(8) For intermolecular reductive couplings of alkynes and aldehydes, see: (a)
Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221. (b) Miller,
K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442.
(c) Mahandru, G. M.; Liu, G.; Montgomery, J. J. Am. Chem. Soc. 2004,
126, 3698. For a strategy that reverses alkyne regioselection, see: (d)
Takai, K.; Sakamoto, S.; Isshiki, T. Org. Lett. 2003, 5, 653. For an alternate
strategy, see: (e) Huddleston, R. R.; Jang, H.-Y.; Krische, M. J. J. Am.
Chem. Soc. 2003, 125, 11488.
(9) For reductive macrocyclizations of ynals with an internal alkyne, see: (a)
Colby, E. A.; O’Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2005,
127, 4297, (b) Chan, J.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126,
10682.
(10) (a) Arduengo, A. J.; Gamper, S. F.; Calabrese, J. C.; Davidson, F. J. Am.
Chem. Soc. 1994, 116, 4391. For a recent review, see: (b) Herrmann, W.
A. Angew. Chem., Int. Ed. 2002, 41, 1290.
(11) Tekavec, T. N.; Arif, A. M.; Louie, J. Tetrahedron 2004, 60, 7431.
(12) Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo, L.; Hoff,
C. D.; Nolan, S. D. J. Am. Chem. Soc. 2005, 127, 2485.
JA054590I
9
J. AM. CHEM. SOC. VOL. 127, NO. 38, 2005 13157